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Abstract

An important correctness criterion for software running on embedded microcontrollers
is stack safety: a guarantee that the call stack does not overflow. We address two aspects
of the problem of helping developers create stack-safe embedded software that makes
efficient use of memory: statically bounding worst-case stack depth, and automatically
reducing stack memory requirements. Our first contribution is a method for statically
guaranteeing stack safety by performing whole-program analysis, using an approach
based on context-sensitive abstract interpretation of machine code. Abstract interpre-
tation permits our tool to accurately model when interrupts are enabled and disabled,
which is essential for accurately bounding the stack depth of typical embedded systems.
We have implemented a stack analysis tool that targets Atmel AVR microcontrollers,
and tested it on real embedded applications compiled from up to 30,000 lines of C. We
experimentally validate the accuracy of the tool, which runs in a few seconds, even on
the largest programs that we tested. The second contribution of this paper is a novel
framework for automatically reducing stack memory requirements. We show that goal-
directed global function inlining can be used to reduce the stack memory requirements
of component-based embedded software, on average, to 40% of the requirement of a
system compiled without inlining, and to 68% of the requirement of a system compiled
with aggressive inlining that is not directed towards reducing stack usage.

1 Introduction

Inexpensive microcontrollers are used in a wide variety of embedded applications such
as vehicle control, consumer electronics, medical automation, and sensor networks.
Static analysis of the behavior of software running on these processors is important
for two main reasons:

– Embedded systems are often used in safety critical applications and can be hard to
upgrade once deployed. Since undetected bugs can be very costly, it is useful to
attempt to find software defects early.

– Severe constraints on cost, size, and power make it undesirable to overprovision
resources as a hedge against unforeseen demand. Rather, worst-case resource re-
quirements should be determined statically and accurately, even for resources like
memory that are convenient to allocate in a dynamic style.

In this paper we describe the results of an experiment in applying static analysis
techniques to binary programs in order to bound and reduce their stack memory require-
ments. We check embedded programs forstack safety: the property that they will not
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Fig. 1. Typical RAM layout for an embedded microcontroller with and without stack
bounding. Without a bound, developers must rely on guesswork to determine the
amount of storage to allocate to the stack.

run out of stack memory at run time. Stack safety, which is not guaranteed by traditional
type-safe languages like Java, is particularly important for embedded software because
stack overflows can easily crash a system. The dynamic stack expansion that is per-
formed by general-purpose operating systems is infeasible on small embedded systems
due to lack of virtual memory hardware and limited availability of physical memory.
For example, 8-bit microcontrollers typically have between a few tens of bytes and a
few tens of kilobytes of RAM. Bounds on stack depth can also be usefully incorporated
into executable programs, for example to assign appropriate stack sizes to threads or to
provide a heap allocator with as much storage as possible without compromising stack
safety.

The alternative to static stack depth analysis that is currently used in industry is to
ensure that memory allocated to the stack exceeds the largest stack size ever observed
during testing by some safety margin. A large safety margin would provide good insur-
ance against stack overflow, but for embedded systems used in products such as sensor
network nodes and consumer electronics, the degree of overprovisioning must be kept
small in order to minimize per-unit product cost. Figure 1 illustrates the relationship
between the testing- and analysis-based approaches to allocating memory for the stack.
Testing-based approaches to software validation are inherently unreliable, and testing
embedded software for maximum stack depth is particularly unreliable because its be-
havior is timing dependent: the worst observed stack depth depends on what code is
executing when an interrupt is triggered and on whether further interrupts trigger be-
fore the first returns. For example, consider a hypothetical embedded system where the
maximum stack depth occurs when the following events occur “simultaneously”: 1) the
main program summarizes data once a second spending 100 microseconds at maximum
stack depth; 2) a timer interrupt occurs 100 times a second spending 100 microseconds
at maximum stack depth; and 3) a packet arrives on a network interface up to 10 times a
second; the handler spends 100 microseconds at maximum stack depth. If these events
occur independently of each other, then the worst case will occur roughly once every
10 years. This means that the worst case will probably not be discovered during test-
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ing, but will probably occur in the real world where there may be many instances of
the embedded system. In practice, the events are not all independent and the timing of
some events can be controlled by the test environment. However, we would expect a
real system to spend less time at the worst-case stack depth and to involve more events.

In addition, we introduce and demonstrate a novel benefit of static stack bounds:
they can be used in a feedback loop to automatically optimize embedded software. The
optimization proceeds by evaluating the effect of a large number of potential program
transformations, applying only those that reduce the worst-case depth of the stack. Static
analysis makes this kind of optimization feasible by rapidly providing accurate infor-
mation about a program. Testing-based approaches to learning about system behavior,
on the other hand, are slower and typically only explore a fraction of the possible state
space.

Our work is preceded by a stack depth analysis by Brylow et al. [3], who also per-
form whole-program analysis of executable programs for embedded systems. However,
while they focused on relatively small programs written by hand in assembly language,
we focus on programs that are up to 30 times larger, and that are compiled from C to a
RISC architecture. The added difficulties in analyzing larger, compiled programs neces-
sitated a more powerful approach based on context-sensitive abstract interpretation of
machine code; we motivate and describe this approach in Section 2. Section 3 discusses
the problems in experimentally validating the abstract interpretation and stack depth
analysis, and presents evidence that the analysis provides accurate results. In Section 4
we describe the use of a stack bounding tool as a part of a stack reduction tool whose
goal is to reduce the stack memory consumption of an embedded system. Finally, we
compare our research to previous efforts in Section 5 and conclude in Section 6.

2 Bounding Stack Depth

Embedded system designers typically try to statically allocate resources needed by the
system. This makes systems more predictable and reliable by providing a priori bounds
on resource consumption. However, an almost universal exception to this rule is that
memory is dynamically allocated on the call stack. Stacks provide a useful model of
storage, with constant-time allocation and deallocation, and without fragmentation. Fur-
thermore, the notion of a stack is designed into microcontrollers at a fundamental level.
For example, hardware support for interrupts typically pushes the machine state onto
the stack before calling the user-defined interrupt handler, and pops the machine state
upon termination of the handler. For developers of embedded systems, it is important
not only to know that the stack depth is bounded, but to have a fairly tight bound — one
that is not much greater than the true worst-case stack depth. This section describes the
whole-program analysis that we use to obtain tight bounds on stack depth.

Our prototype stack analysis tool targets programs compiled to Atmel’s AVR family
of microcontrollers. We chose to analyze binary program images, rather than source
code, for a number of reasons:

– There is no need to predict compiler behavior. Many compiler decisions, such as
those regarding function inlining and register allocation, have a strong effect on
stack depth.
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– Inlined assembly language is common in embedded systems, and a safe analysis
must account for its effects.

– The source code for libraries and real-time operating systems are commonly not
available for embedded developers to analyze.

– Since the analysis is independent of the compiler, system developers are free to
change compilers or compiler versions. Also, the analysis is not fragile with respect
to non-standard language extensions that embedded compilers commonly use to
provide developers with fine-grained control over processor-specific features.

– Adding a post-compilation analysis step to the development process presents de-
velopers with a clean usage model.

2.1 Analysis Overview and Motivation

The first challenge in bounding stack depth is to measure the contributions to the stack
of each interrupt handler and of the main program. Since indirect function calls and
recursion are uncommon in embedded systems [4], a callgraph for each entry point into
the program can be constructed using standard analysis techniques. Given a callgraph
it is straightforward to compute its stack requirements.

The second, more difficult, challenge in embedded systems is accurately estimating
interactions between interrupt handlers and the main program to compute a maximum
stack depth for the whole system. If interrupts were disabled while running interrupt
handlers, one could safely estimate the stack bound of a system containingn interrupt
handlers using this formula:

stack bound= depth(main)+ max
i=1..n

depth(interrupti)

However, interrupt handlers are often run with interrupts enabled to ensure that other
interrupt handlers are able to meet real-time deadlines. If a system permits at most one
concurrent instance of each interrupt handler, the worst-case stack depth of a system
can be computed using this formula:

stack bound= depth(main)+
∑

i=1..n

depth(interrupti)

Unfortunately, as we show in Section 3, this simple formula often provides unneces-
sarily pessimistic answers when used to analyze real systems where only some parts of
some interrupt handlers run with interrupts enabled. To obtain a safe, accurate estimate
of the global stack bound of embedded systems where interrupt handlers enable and
disable interrupts, we must model changes to the interrupt mask.

Our program analysis has two parts. The first must generate an accurate estimation
of (1) the effect of each instruction on the stack depth and (2) the state of the processor’s
interrupt mask at each point in a program. The second part of the analysis — unlike the
first — accounts for interactions between interrupt handlers and can accurately bound
the global stack requirement for a system.

Figure 2 presents a fragment of machine code that motivates our approach to pro-
gram analysis. Code similar to this can be found in almost any embedded system: its
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in r24, 0x3f ; r24 <- CPU status register
cli ; disable interrupts
adc r24, r24 ; carry bit <- prev interrupt status
eor r24, r24 ; r24 <- 0
adc r24, r24 ; r24 <- carry bit
mov r18, r24 ; r18 <- r24

... critical section ...

and r18, r18 ; test r18 for zero
breq .+2 ; if zero, skip next instruction
sei ; enable interrupts
ret ; return from function

Fig. 2.This fragment of assembly language for Atmel AVR microcontrollers motivates
our approach to program analysis and illustrates a common idiom in embedded soft-
ware: disable interrupts, execute a critical section, and then reenable interrupts only if
they had previously been enabled

purpose is to disable interrupts, execute a critical section that must run atomically with
respect to interrupt handlers, and then reenable interrupts only if they had previously
been enabled. There are a number of challenges in analyzing such code.

First, effects of arithmetic and logical operations must be modeled with enough ac-
curacy to track data movement through general-purpose and special-purpose registers.
In addition, partially unknown data must be modeled. For example, analysis of the code
fragment must succeed even when only a single bit of the CPU status register — the
master interrupt control bit — is known.

Second, dead edges in the control-flow graph must be detected and avoided. For ex-
ample, when the example code fragment is called in a context where interrupts are dis-
abled, it is important that the analysis conclude that thesei instruction is not executed
since this would “pollute” the estimate of the processor state at subsequent addresses.

Finally, to prevent procedural aliasing from degrading the estimate of the machine
state, a context sensitive analysis must be used. For example, in some systems the code
in Figure 2 is called with interrupts disabled by some parts of the system and is called
with interrupts enabled by other parts of the system. With a context-insensitive analysis,
the analysis concludes that, since the initial state of the interrupt flag can vary, the final
state of the interrupt flag can also vary and so analysis of both callers of the function
would proceed with the interrupt flag unknown. This can lead to large overestimates
in stack bounds since unknown values are propagated to any code that could execute
after the call. With a context-sensitive analysis, the two calls are analyzed separately
resulting in an accurate estimate of the interrupt state.

The next section describes the abstract interpretation we have developed to meet
these challenges.
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Fig. 3.Modeling machine states and operations in the abstract interpretation

2.2 Abstracting the Processor State

The purpose of our abstract interpretation is to generate a safe, precise estimate of the
state of the processor at each point in the program; this is a requirement for finding
a tight bound on stack depth. Designing the abstract interpretation boils down to two
main decisions.

First, how much of the machine state should the analysis model? For programs that
we have analyzed, it is sufficient to model the program counter, general-purpose regis-
ters, and several I/O registers. Atmel AVR chips contain 32 general-purpose registers
and 64 I/O registers; each register stores 8 bits. From the I/O space we model the reg-
isters that contain interrupt masks and the processor status register. We do not model
main memory or most I/O registers, such as those that implement timers, analog-to-
digital conversion, and serial communication.

Second, what is the abstract model for each element of machine state? We chose
to model the machine at the bit level to capture the effect of bitwise operations on the
interrupt mask and condition code register — we had initially attempted to model the
machine at word granularity and this turned out to lose too much information through
conservative approximation. Each bit of machine state is modeled using the lattice de-
picted in Figure 3(a). The lattice contains the values 0 and 1, which correspond to bits
whose value can be proven to be either 0 or 1 at a particular program point. For ex-
ample, after executing an instruction that loads the literal value 0x0f into a register, the
register’s state is known to be{0, 0, 0, 0, 1, 1, 1, 1}. The lattice also contains a bottom
element,⊥, that corresponds to a bit that could be either a 0 or a 1.

Figure 3(b) shows abstractions of some common logical operators. Abstractions of
operators should always return a result that is as accurate as possible. For example,
when all bits of the input to an instruction have the value 0 or 1, the execution of the
instruction should have the same result that it would have on a real processor. In this
respect our abstract interpreter implements most of the functionality of a standard CPU
simulator.

When executing theand instruction with the literal value{1, 1, 0, 0, 1, 1, 0, 0} as
one argument and a register that contains the value{⊥,⊥,⊥,⊥, 1, 1, 1, 1} as the other
argument, the result register will contain the value{⊥,⊥, 0, 0, 1, 1, 0, 0}. Arithmetic
operators are treated similarly, but require more care because bits in the result typically
depend on multiple bits in the input. Furthermore, the abstract interpretation must take
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into account the effect of instructions on processor condition codes, since subsequent
branching decisions are made using these values.

The example in Figure 2 illustrates two special cases that must be accounted for
in the abstract interpretation. First, the add-with-carry instructionadc , when both of
its arguments are the same register, acts as rotate-left-through-carry. In other words, it
shifts each bit in its input one position to the left, with the leftmost bit going into the
CPU’s carry flag and the previous carry flag going into the rightmost bit. Second, the
exclusive-or instructioneor , when both of its arguments are the same register, acts like
a clear instruction — after its execution the register is known to contain all zero bits
regardless of its previous contents.

2.3 Managing Abstract Processor States

An important decision in designing the analysis was when to create a copy of the ab-
stract machine state at a particular program point, as opposed to merging two abstract
states. The merge operator, shown in Figure 3(b), is lossy since a conservative approx-
imation must always be made. We have chosen to implement a context-sensitive anal-
ysis, which means that we fork the machine state each time a function call is made,
and at no other points in the program. This has several consequences. First, and most
important, it means that the abstract interpretation is not forced to make a conservative
approximation when a function is called from different points in the program where the
processor is in different states. In particular, when a function is called both with inter-
rupts enabled and disabled, the analysis is not forced to conclude that the status of the
interrupt bit is unknown inside the function and upon return from it. Second, it means
that we cannot show termination of a loop implemented within a function. This is not a
problem at present since loops are irrelevant to the stack depth analysis as long as there
is no net change in stack depth across the loop. However, it will become a problem if we
decide to push our analysis forward to bound heap allocation or execution time. Third,
it means that we can, in principle, detect termination of recursion. However, our current
implementation rarely does so in practice because most recursion is bounded by values
that are stored on the stack — which our analysis does not model. Finally, forking the
state at function calls means that the state space of the stack analyzer might become
large. This has not been a problem in practice; the largest programs that we have ana-
lyzed cause the analyzer to allocate about 140 MB. If memory requirements become a
problem for the analysis, a relatively simple solution would be to merge program states
that are identical or that are “similar enough” that a conservative merging will result in
minimal loss of precision.

2.4 Abstract Interpretation and Stack Analysis Algorithms

The program analysis begins by initializing a worklist with all entry points into the
program; entry points are found by examining the vector of interrupt handlers that is
stored at the bottom of a program image, which includes the address ofmain() . For
each item in the worklist, the analyzer abstractly interprets a single instruction. If the
interpretation changes the state of the processor at that program point, items are added
to the worklist corresponding to each live control flow edge leaving the instruction.

7



Termination is assured because the state space for a program is finite and because we
never revisit states more than once.

The abstract interpretation detects control-flow edges that are dead in a particular
context, and also control-flow edges that are dead in all contexts. In many systems we
have analyzed, the abstract interpretation finds up to a dozen branches that are provably
not taken. This illustrates the increased precision of our analysis relative to the dataflow
analysis that an optimizing compiler has previously performed on the embedded pro-
gram as part of a dead code elimination pass.

In the second phase, the analysis considers there to be a control flow edge from
every instruction in the program to the first instruction of every interrupt handler that
cannot be proven to be disabled at that program point. An interrupt is disabled if either
the master interrupt bit is zero or the enable bit for the particular interrupt is zero. Once
these edges are known, the worst-case stack depth for a program can be found using the
method developed by Brylow et al. [3]: perform a depth-first search over control flow
edges, explicit and implicit, keeping track of the effect of each instruction on the stack
depth, and also keeping track of the largest stack depth seen so far.

A complication that we have encountered in many real programs is that interrupts
commonly run with all interrupts enabled, admitting the possibility that a new instance
of an interrupt handler will be signaled before the previous instance terminates. In prin-
ciple, the stack analysis must return an unbounded stack depth when it recognizes a
self-preempting interrupt. However, in real systems that we have looked at, this code
is so common that we have provided a facility for working around it by permitting the
programmer to manually assert that a particular interrupt handler can preempt itself
only up to a certain number of times. Programmers appear to commonly rely on ad
hoc real-time reasoning, e.g., “this interrupt only arrives 10 times per second and so it
cannot possibly interrupt itself.” In practice, most instances of this kind of reasoning
should be considered design flaws since there is a better alternative: each interrupt han-
dler should only enable the interrupts that the system designers have decided should be
able to preempt the currently running interrupt.

2.5 Other Challenges

In this section we address other challenges faced by the stack analysis tool: loads into
the stack pointer, self-modifying code, indirect branches, and recursive function calls.
These features can complicate or defeat static analysis. However, embedded developers
tend to make very limited use of them, and in our experience static analysis of real
programs is still possible and, moreover, effective.

We support code that increments or decrements the stack pointer by constants. Code
that changes the stack pointer to new values (as is done in preemptive real-time oper-
ating systems) would need extra support. Code that adds non-constants to the stack
pointer (e.g., to allocate variable sized arrays on the stack) would require some extra
work to bound the amount of space added to the stack.

Our analysis assumes that the code is not self-modifying. This is valid for the AVR
processor, which has a Harvard architecture, and for ROM-based systems, but would
be hard to validate for RAM-based systems. Fortunately, use of self-modifying code is
rare and discouraged.
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Our analysis must build a conservative approximation of the program’s control flow
graph. Indirect branches cause problems for program analysis because it can be diffi-
cult to tightly bound the set of potential branch targets. Our approach to dealing with
indirect branches is based on the observation that they are usually used in a structured
way, and the structure can be exploited to learn the set of targets. For example, when
analyzing TinyOS [6] programs, the argument to the functionTOSpost is usually a
literal constant representing the address of a function that will be called by an event
scheduling loop. The value of the argument is identified by the abstract interpretation.
Our analysis cannot deal with the form of indirect branch found in the context switch
routine of a preemptive real-time operating system — the set of potential targets is sim-
ply too large. However, these branches need not be analyzed: since switching context
to a new thread involves a change to a completely separate stack, it suffices to learn the
worst-case stack usage of the operating system code and add it to the worst-case stack
usage for each thread.

Recursive code is uncommon in embedded software. For example, Engblom [4]
studied a collection of embedded systems containing over 300,000 lines of C code, and
it contained only 14 recursive loops. Our approach to dealing with recursion, therefore,
is blunt: we require that developers explicitly specify a maximum iteration count for
each recursive loop in a system. The analysis returns an unbounded stack depth if the
developers neglect to specify a limit for a particular loop.

It would be straightforward to port our stack analyzer to other processors: the stack
analysis algorithms, such as the whole-program analysis for worst-case stack depth,
operate on an abstract representation of the program that is not processor dependent.
However, the analysis would be inaccurate for register-poor architectures since code
for those architectures makes significant use of the stack that is not currently modeled
by our tool. In particular, we would probably not obtain precise results for the code in
Figure 2 that we used to motivate our approach. To handle stack-oriented processors we
are developing an approach to modeling the stack that is based on a simple type system
for registers that are used as pointers into stack frames.

2.6 Using the Stack Tool

We have a prototype tool that implements our stack depth analysis. In its simplest mode
of usage, the stack tool returns a single number: an upper bound on the stack depth for
a system. For example:

$ ./stacktool -w flybywire.elf
total stack requirement from global analysis = 55

To increase the tool’s utility we provide a number of more advanced features, in-
cluding switching between context-sensitive and context-insensitive program analysis,
creating a graphical callgraph for a system, listing branches that can be proven to be
dead in all contexts, finding the shortest path through a program that reaches the max-
imum stack depth, and printing a disassembled version of the embedded program with
annotations indicating interrupt status and worst-case stack depth at each instruction.
These are all useful in helping developers understand and manually reduce stack mem-
ory consumption in their programs.
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There are other obvious ways to use the stack tool that we have not yet implemented.
For example, using stack bounds to compute the maximum size of the heap for a system
so that it stops just short of the stack area, or computing the stack size for individual
threads in a multi-threaded embedded system. Ideally, the analysis would become part
of the build process and values from the analysis would be used directly in the code
being generated.

3 Validating the Analysis

We used several approaches to increase our confidence in the validity of the abstract
interpretation and stack depth analyses.

3.1 Validating the Abstract Interpretation

To test the abstract interpretation, we modified a simulator for AVR processors to dump
the state of the machine after executing each instruction. Then, we created a separate
program to ensure that this concrete state was “within” the conservative approximation
of the machine state produced by the abstract interpretation at that address and that
the simulator did not execute any instructions that had been marked as dead code by the
static analysis. During early development of the analysis this was helpful in finding bugs
and in providing a much more thorough check on the abstract interpretation than manual
inspection of analysis results — our next-best validation technique. We executed at least
100,000 instructions of about a dozen programs, including several that were written
specifically to stress test the analysis and did not find any discrepancies. Unfortunately,
the simulator used could not simulate external interrupts or I/O devices so we were
limited to testing the main function of programs, not interrupt handlers.

3.2 Validating Stack Bounds

There are two important metrics for validating the bounds returned by the stack tool.
The first is qualitative: Does the tool ever return an unsafe result? Testing the stack tool
against actual execution of about a dozen embedded applications has not turned up any
examples where it has returned a bound that is less than an observed stack depth. This
justifies some confidence that our algorithms are sound, although there is always the
possibility of bugs in the implementation.

Our second metric is quantitative: Is the tool capable of returning results that are
close to the true worst-case stack depth for a system? The maximum observed stack
depth, the worst-case stack depth estimate from the stack tool, and the (non-computable)
true worst-case stack depth are related in this way:

worst observed≤ true worst≤ estimated worst

One might hope that the precision of the analysis could be validated straightfor-
wardly by instrumenting some embedded systems to make them report their worst-
observed stack depth and comparing these values to the bounds on stack depth. For
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several reasons, this approach produces maximum observed stack depths which are sig-
nificantly smaller than the estimated worst case and, we believe, the true worst case.
First, the timing issues that we discussed in Section 1 come into play, making it very
hard to observe interrupt handlers preempting each other even when it is clearly possi-
ble that they may do so. Second, even within the main function and individual interrupt
handlers, it can be very difficult to force an embedded system to execute the code path
that produces the worst-case stack depth. Embedded systems often present a narrower
external interface than do traditional applications, and it is correspondingly harder to
deterministically force them to execute certain code paths using test inputs. While the
difficulty of thorough testing is frustrating, it does support our thesis that static program
analysis is particularly important in this domain.

The 71 embedded applications that we used to test our analysis come from three
families. The first is Autopilot, a simple cyclic-executive style control program for an
autonomous helicopter [10]. The second is a collection of application programs that are
distributed with TinyOS version 0.6.1, a small operating system for networked sensor
nodes. The third is a collection of application programs that are distributed with TinyOS
1.0 [6]. Version 1.0 is a complete rewrite of TinyOS using nesC [5], a programming
language very similar to C that is compiled by translating into C. All programs were
compiled from C using gcc version 3.0.2 or 3.1.1, and all target the ATmega103 chip,
a member of the Atmel AVR family that contains 4 KB of RAM and 128 KB of flash
memory for program storage.

3.3 Validating Analysis of Individual Interrupts

To quantitatively evaluate the stack tool, we wrote a program that modifies the assembly
language version of an AVR program in such a way that each interrupt is handled on
its own stack. This makes stack measurement timing-independent, but still leaves the
difficult problem of making the main function and each interrupt handler execute the
path to the worst-case stack depth.

We found that a perfect match between predicted and actual stack depth could only
be obtained for slightly modified versions of simple embedded applications such as the
BlinkTask TinyOS kernel whose function is to flash an LED. Even for this example,
we were forced to comment out a call to a function supporting one-shot timers in a
timer module: it contributed to the worst-case stack depth, but could never be called
in our system. (Detecting this dead code is beyond the present capabilities of the stack
tool.) After making this small modification and adding serial-line driver code to enable
reporting of stack depths to a separate computer, theBlinkTask application contained
about 4000 lines of C code, even after a dead-code elimination pass performed by nesC.
Running the stack analysis on this modified kernel produced the following results:

Stack depths:
vector 0 main = 33, at d30
vector 15 _output_compare0_ = 32, at 50a
vector 18 _uart_recv_ = 27, at 3e8
vector 20 _uart_trans_ = 23, at a90

This shows the estimated worst-case stack depth of each entry point into the pro-
gram and also an address at which this depth is reached. We then ran this kernel on an
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Fig. 4.Comparing stack bounds for summation of interrupts, global context insensitive
analysis, and context sensitive analysis

AVR processor and queried it to learn the worst observed stack depth; it reported the
same stack depths as the analysis reported.

3.4 Evaluating the Global Analysis

Of the 71 applications used to test our analysis, there are nine that defeat our analysis
tool, for example because they make an indirect jump based on a value that is not a
literal constant, or they load an indeterminate value into the stack pointer. We believe
that some of these applications could be successfully analyzed by a slightly improved
version of our stack tool, but for now we disregard them. The stack analysis results
from the remaining 62 kernels are too large to display in a figure so we have chosen,
at random, 15 TinyOS 0.6.1 applications and 15 TinyOS 1.0 applications and displayed
them in Figure 4.1 Statistical analysis of the stack analysis results of all 62 applications
shows that on average, the context insensitive global analysis returns a stack bound that
is 15% lower than the bound determined by summing the requirements of interrupt han-
dlers and the main function, and that on average the context sensitive analysis returns
a bound that is 35% lower than the bound computed by summing interrupts. Since in-
creased precision in the analysis translates directly into memory savings for embedded
developers, we believe that the added complexity of the context-sensitive analysis is

1 Note to reviewers: the full graph can be found athttp://www.cs.utah.edu/
˜regehr/stacktool/all_bounds.png
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justified. In most cases where the more powerful analysis did not decrease the stack
bound — for example, the autopilot application — there was simply nothing that the
tool could do: these applications run all interrupt handlers with interrupts enabled, pre-
cluding tight bounds on stack depth. Finally, the stack depth analysis requires under
4 seconds of CPU time on a 1.4 GHz Athlon for all of our example programs, and for
many applications it requires well under 1 second.

4 Reducing Stack Depth

Previous sections described and evaluated a tool for bounding stack depth. In this sec-
tion we go a step further by exploring the use of the stack bounding tool as an essential
part of a method for automatically reducing the stack memory requirements of em-
bedded software. Reducing stack depth is useful because it potentially frees up more
storage for the heap, permits more threads to be run on a given processor, or permits a
product to be based on a less expensive CPU with fewer on-chip resources.

The basic observation that makes stack minimization possible is that given a way
to quickly and accurately bound the stack depth of a program, it becomes possible for
a compiler or similar tool to rapidly evaluate the effect of a large number of program
transformations on the stack requirements of a system. We then choose to apply only
the transformations that improve stack memory usage.

Figure 5 illustrates our approach to automatic stack depth reduction. Although this
technique is generic and would admit a variety of program transformations, so far the
only transformation we have experience with is global function inlining. Function in-
lining is a common optimization that replaces calls to a function with a copy of the
function itself. The immediate effect of function inlining on stack usage is to avoid
the need to push a return address and function arguments onto the stack. More signif-
icantly, inlining allows intraprocedural optimizations to apply which may simplify the
code to the extent that fewer temporary variables are required, which may reduce stack
usage. Inlining also allows better register allocation since the compiler considers the
caller and the callee simultaneously instead of separately. In general, inlining needs to
be used sparingly. If a function is inlined many times, the size of the compiled binary
can increase. Furthermore, aggressive inlining can actuallyincreasestack memory re-
quirements by overloading the compiler’s register allocator. In previous work [11], we
developed a global function inliner for C programs that can perform inlining on com-
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plete programs instead of within individual C files. To support the work reported in this
paper, we modified this inliner to accept an explicit list of callgraph edges to inline.

To reduce the stack depth requirements of an embedded system we perform a heuris-
tic search that attempts to minimize thecostof a program, where cost is a user-supplied
function of stack depth and code size. For example, one cost function minimizes stack
depth without regard to code size; since the processors we currently use have 32 times
more code memory than data memory, another obvious cost function is willing to trade
one byte of stack memory for 32 bytes of code memory.

Systems that we have analyzed contain between 80 and 670 callgraph edges that
could be inlined, leading in the worst case to2670 possible inlining decisions. Since this
space obviously cannot be searched exhaustively, we use a heuristic search. We have
found that an effective approach is to bound the degree of inlining “from above” and
“from below” and then perform a random search of the space in between. We found that
minimizing code size is often best accomplished by starting with no functions inlined
and then repeatedly picking an uninlined function and inlining it only if this improves
the cost metric. Minimizing stack depth, on the other hand, is often best accomplished
by starting with all functions inlined and then repeatedly picking an inlined function and
dropping the inlining if this improves the cost metric. To see why this is more effective
at reducing stack depth, consider a system where there are two paths to the maximum
stack depth. Separately considering inlining decisions on either path will not improve
the stack depth: it is only by considering both inlinings at once that their benefit is seen.

Having found upper and lower bounds on the inlining decisions, we search the space
between the bounds by accepting inlinings where the previous solutions agreed, and
then repeatedly test inlinings that they disagreed on. In practice, we find that this step
often finds solutions missed by the previous two steps.

Figure 6 shows the results of applying the stack depth / code size reduction algo-
rithm to the TinyOS kernelCntToLedsAndRfm . There are three data points corre-
sponding respectively to a system compiled without any function inlining, to a system
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compiled with as much inlining as possible (subject to limitations on inlining recursive
functions and indirect calls), and to a system compiled by the nesC compiler [5], which
performs fairly aggressive function inlining on its own. The remaining data points were
collected by running our stack reduction algorithm with a variety of cost functions rang-
ing from those that gave high priority to reducing stack depth to those that gave high
priority to reducing code size. These results are typical: we applied stack depth reduc-
tion to a number of TinyOS kernels and found that we could usually use about 40% of
the stack required by a kernel without any inlining, and about 68% of the stack required
by kernels compiled using nesC.

5 Related Work

The previous research most closely related to our work is the stack depth analysis by
Brylow et al. [3]. Their analysis was designed to handle programs written by hand that
are on the order of 1000 lines of assembly language; the programs we analyze, on the
other hand, are compiled and are up to 30 times larger. Their contribution was to model
interrupt-driven embedded systems, but their method could only handle immediate val-
ues loaded into the interrupt mask register — an ineffective technique when applied to
software where all data, including interrupt masks, moves through registers. Our work
goes well beyond theirs through its use of an aggressive abstract interpretation of ALU
operations, conditional branches, etc. to track the status of the interrupt mask.

Palsberg and Ma [9] provide a calculus for reasoning about interrupt-driven system
and a type-system for checking stack boundedness. Like us, they provide a degree of
context sensitivity (in their type system this is encoded using intersection types). Unlike
us, they model just the interrupt mask register which would prevent them from accu-
rately modeling our motivating example in Figure 2. The other major difference is that
their focus is on the calculus and its formal properties and so they restrict their attention
to small examples (10–15 instructions) which can be studied in extreme detail and they
restrict themselves to a greatly simplified language (it lacks pointers and function calls).

AbsInt makes a commercial product called StackAnalyzer [1]; its goal is to estimate
stack depth in embedded software. We were not able to find much information about
this tool. In particular, there is no indication that it is attempting to model the status of
the interrupt mask, the most important feature of our analysis.

Our abstract interpretation is largely a combination of standard techniques. We have
already mentioned that Java virtual machines perform an intraprocedural stack depth
analysis [8], and modeling individual bits is commonplace. See, for example, the dis-
cussion of possible lattices for MIT’s Bitwise project [12]. Our contribution lies in
determining which combination of techniques obtains good results for this problem.

Function inlining has, traditionally, been viewed as a performance optimization [2]
at the cost of a potentially large increase in code size. More recent work (typically using
whole program analysis) such as [7] has examined the use of inlining as a technique to
reduce both code size and runtime. We are not aware of any previous work which uses
function inlining specifically to reduce stack size or, in fact, of any previous work on
automatically reducing stack depth in embedded software.
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6 Conclusion

The potential for stack overflow in embedded systems is hard to detect by testing. We
have developed a static analysis that can prove that an embedded system will not over-
flow its stack, and demonstrated that the analysis provides accurate results. Experiments
show that modeling the enabling and disabling of interrupt handlers using context sen-
sitive abstract interpretation produces estimates that are an average of 35% lower than
estimates produced using a simpler approach. We have also demonstrated a novel use of
this analysis to drive a search for function inlining decisions which reduce stack depth.
Experiments on a number of component-based embedded applications show that this
approach reduces stack memory requirements by an average of 32% compared with
aggressive inlining without the aid of a stack depth analysis.

Acknowledgments:The authors would like to thank Eric Eide, Matthew Flatt, Wil-
son Hsieh, and Mike Nahas for providing helpful feedback on drafts of this paper.
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