
Factor: A Dynamic Stack-based Programming Language

Slava Pestov
Stack Effects LLC

slava@factorcode.org

Daniel Ehrenberg
Carleton College

ehrenbed@carleton.edu

Joe Groff
Durian Software

joe@duriansoftware.com

Abstract
Factor is a new dynamic object-oriented programming lan-
guage. It began as an embedded scripting language and
evolved to a mature application development language. The
language has a simple execution model and is based on the
manipulation of data on a stack. An advanced metaprogram-
ming system provides means for easily extending the lan-
guage. Thus, Factor allows programmers to use the right
features for their problem domain. The Factor implemen-
tation is self-hosting, featuring an interactive development
environment and an optimizing compiler. In this paper, the
language and its implementation are presented.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features; D.3.4
[Programming Languages]: Processors — Compilers, Op-
timization

General Terms Languages, Design, Performance

Keywords Factor, dynamic languages, stack-based lan-
guages

1. Introduction
Factor is a dynamic stack-based programming language. It
was originally conceived as an experiment to create a stack-
based language practical for modern programming tasks.
It was inspired by earlier stack-based languages like Forth
[33] and Joy [44]. The stack-based model allows for con-
cise and flexible syntax with a high degree of factoring and
code reuse. Driven by the needs of its users, Factor gradu-
ally evolved from this base into a dynamic, object-oriented
programming language. Although there is little truly novel
to the Factor language or implementation, Factor’s combi-
nation of the stack-based paradigm with functional, object-
oriented, and low-level programming features alongside its

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DLS 2010, October 18, 2010, Reno/Tahoe, Nevada, USA.
Copyright c⃝ 2010 ACM 978-1-4503-0405-4/10/10. . . $10.00

high-performance implementation and interactive develop-
ment environment make it notable.

Factor programs look very different from programs in
most other programming languages. At the most basic level,
function calls and arithmetic use postfix syntax, rather than
prefix or infix as in most programming languages. Factor
provides local variables, but they are used in only a small
minority of procedures because its language features allow
most code to be comfortably written in a point-free style.

Factor is an object-oriented language with an object sys-
tem centered around CLOS-inspired generic functions in
place of traditional message passing. To make Factor suit-
able for development of larger applications, it has a robust
module system. Factor’s metaprogramming system allows
for arbitrary extension of syntax and for compile-time com-
putation. Factor allows the clean integration of high-level
and low-level code with extensive support for calling li-
braries in other languages and for efficient manipulation of
binary data.

Factor has an advanced, high-performance implementa-
tion. We believe good support for interactive development is
invaluable, and for this reason Factor allows programmers to
test and reload code as it runs. Our ahead-of-time optimiz-
ing compiler and efficient runtime system can remove much
of the overhead of high-level language features. Together,
these features make Factor a useful language for writing both
quick scripts and large programs in a high-level way.

Factor is an open-source project and the product of
many contributors. It is available for free download from
http://factorcode.org.

This paper contributes the following:

• Abstractions and checking for managing the flow of data
in stack-based languages (Section 2.1)

• A CLOS- and Dylan-inspired object system, featuring
generic functions built upon a metaobject protocol and
a flexible type system (Section 2.2)

• An expressive and easy-to-use system for staged metapro-
gramming (Section 2.3)

• The design of a foreign function interface and low-level
capabilities in a dynamic language (Section 2.4)

43

"data.txt" utf8 file-lines
10 head

Figure 1: Retrieving the first ten lines of a file

• The design of an effective optimizing compiler for a
dynamic language (Section 3)

• A case study in the evolution of a dynamic language
(Secton 4)

Much of Factor’s features and implementation are not rad-
ically different from previous dynamic languages. It is the
combination of these features into a useful system that make
Factor notable.

2. Language Design
Factor combines features from existing languages with new
innovations. We focus here on the prominent unique aspects
of Factor’s design: our contributions to the stack-based lan-
guage paradigm, the module and object systems, tools for
metaprogramming, and low-level binary data manipulation
support.

2.1 Stack-based Programming Language

In Factor, as in Forth and Joy [44], function parameters are
passed by pushing them on an operand stack prior to per-
forming the function call. We introduce two original contri-
butions: a set of combinators which replace the stack shuf-
fling words found in other stack languages, and a syntax for
partial application.

2.1.1 Postfix Syntax

In stack-based languages, a function call is written as a sin-
gle token, which leads to the term “word” being used in
place of “function”, in the Forth tradition. This contrasts
with mainstream programming languages, in which func-
tion call syntax combines the function name with a list of
parameters. Symbols that traditionally behave as operators
with infix syntax in other languages, such as +, -, *, and /,
are normal postfix words in Factor and receive no special
syntactic treatment. Languages which use an operand stack
in this manner have been called concatenative, because they
have the property that programs are created by “concatenat-
ing” (or “composing”) smaller programs. In this way, words
can be seen as functions which take and return a stack [30].

Literals in a stack language, such as "data.txt" and 10
in Figure 1, can be thought of as functions that push them-
selves on the stack, making the values available to subse-
quent word calls which pop them off the stack. Some words,
such as utf8, can also behave as literal symbols that push
themselves on the stack. file-lines consumes two objects
from the stack, the filename string "data.txt" and the en-
coding symbol utf8, and pushes back an array of strings,
the contents of the specified file broken into lines of text.

On the second line, the standard library word head pops
two objects from the stack, the array of lines of text result-
ing from file-lines and the integer 10, and pushes a new
array containing a fixed number of elements from the be-
ginning of the input array. The final result of the example
is an array containing the first ten lines of text from the file
"data.txt" as strings.

The two lines of code in Figure 1 can be understood
either as separate programs or concatenated to form a single
program. The latter case has the effect of first running the
first program and then the second. Note that in Factor source
code, newlines between words are interpreted the same as
spaces.

2.1.2 Higher-order Programming

Factor supports higher-order functions (functions which take
functions as arguments). In the Joy tradition, we refer to
higher-order functions as combinators and to anonymous
functions as quotations. Quotation literals are pushed on the
stack by surrounding a series of tokens with [and], which
delays the evaluation of the surrounded code and stores it
in a quotation object. Combinators are invoked like any
other word, with quotation objects as parameters. In Factor,
all control flow is expressed using combinators, including
common branching and looping constructs usually given
special syntax in other languages. Some examples:

• if is a combinator taking three inputs from the stack: a
boolean value, a “then” branch quotation, and an “else”
branch quotation. For example,
2 even? ["OK"] ["Cosmic rays detected"]
if
tests whether the value 2 is even, placing the string "OK"
on the stack if so or "Cosmic rays detected" if not.

• The each standard library word implements what other
languages call a “for-each” loop. It iterates in order over
the elements of an array (or other sequence, see 2.2.2),
invoking a quotation with each element as the input pa-
rameter on each iteration. For example,
{ "veni" "vidi" "vici" } [print] each
will print the strings "veni", "vidi", and "vici" to the
console in order. (The { and } delimiters create a literal
array object in the same manner [and] create a quota-
tion.)

• reduce is a variation of each that accumulates a value
between iterations. From the top of the stack, it takes an
array, an initial accumulator value, and a quotation. On
each iteration, it passes to the provided quotation the next
item in the array along with the accumulated value thus
far. For example,
{ 1 2 3 4 } 0 [+] reduce
will sum the numbers 1, 2, 3, and 4, and
{ 1 2 3 4 } 1 [*] reduce
will multiply them.

44

["#" head? not] filter
[string>number] map
0 [+] reduce

Figure 2: Summing the numerical value of array elements
not beginning with #

• map iterates over its input array like each but addition-
ally collects the output value from each invocation of the
quotation into a new array. For example,
{ "veni" "vidi" "vici" } [reverse] map
will make a reversed copy of every element in an ar-
ray, collecting them into a new array { "inev" "idiv"
"iciv" }.

• filter also invokes a quotation over every element of
an array but collects only the elements for which the
quotation returns true into a new array, leaving them
unchanged from the input array. For example,
{ 1 4 9 16 } [even?] filter
will create a new array containing the elements of the
input array that are even: { 4 16 }.

The code snippet in Figure 2 shows how a series of op-
erations involving these combinators can be composed. As
input, it expects an array on the stack containing string el-
ements. The first line uses the head? word, which takes
two strings off the stack and outputs a boolean indicating
whether the first one begins with the second; for example,
"# comment" "#" head? would output true whereas "17"
"#" head? would output false. The snippet uses head? as a
predicate quotation for filter (with the predicate negated
by the not word) to remove strings beginning with # from
the input array. This filtered array then acts as input to the
second line, where the map applies the string>number
word to each remaining array element, converting the ele-
ments from strings into numbers. Finally, on the third line,
the reduce combinator adds the resulting numeric values
together.

Code written in this style, in which a single input value
is gradually transformed and reshaped in distinct steps into
a result, is known as pipeline code, named due to the resem-
blance to the use of pipes in Unix shells. Pipeline code is
expressed very naturally in Factor; given several words, say
a, b, c, each taking a single object from the stack and push-
ing a single result, the code that applies each word to the
result of the previous word is simply written as

a b c

In a non-concatenative language like Python, the following
would be used:

c(b(a(x)))

Compared to Factor, the above code has more syntactic
nesting, and the order of tokens is backwards from the order
of evaluation. Functional languages often have operators for

: tail-factorial (accumulator n -- n!)
dup 0 =
[drop]
[[*] [1 -] bi tail-factorial]
if ;

: factorial (n -- n!)
1 swap (factorial) ;

Figure 3: Tail-recursive factorial in Factor

function composition inspired by traditional mathematical
notation that help simplify the expression of pipeline code,
such as Haskell’s . operator:

c . b . a

The composition operator improves on the nesting and syn-
tactic overhead required by the non-concatenative approach,
but when compared to Factor, the approach still requires ad-
ditional operators and leaves the order of operations reading
in reverse order.

Fundamentally, all control flow in Factor is achieved ei-
ther by branching via the aforementioned if combinator or
by recursion. if considers all values to be true except for
the f word, which represents false. Looping combinators
such as each combine branching with tail recursion to ex-
press loops. Factor guarantees tail call optimization. Figure
3 shows an example of conditionals and recursion to imple-
ment the factorial operation. The figure also introduces the
: syntax for defining new words and the (--) syntax for
stack effects, and features the stack shuffle words dup, drop,
and swap and the dataflow combinator bi. These features
will be described in the following subsections.

2.1.3 Stack Effects

Factor provides a formal notation for describing the inputs
and outputs of a word called stack effect notation, which
is used both in Factor documentation and in Factor source
code. For example, the stack effect of the tail-factorial
word in Figure 3is written as follows, with the special token
-- separating inputs from outputs:

(accumulator n -- n!)

This indicates that the word takes two inputs off the stack,
given the names accumulator and n, and leaves one new
result n!. The names are for documentation and do not affect
the meaning of the program. The factorial word’s stack
effect (n -- n!) likewise indicates that it takes one input
off the stack and outputs a new value. New words such as
tail-factorial and factorial are defined with the :
token, which is followed by the name of the new word, the
stack effect, and the definition, with the definition terminated
by the ; token. Every word definition must have a stack
effect declared.

45

Factor stack effect notation is similar to conventional
Forth stack effect notation. However, in Forth, the contents
of a stack effect are mere comments skipped over by the
parser, and their notation is a matter of programmer con-
vention. By contrast, Factor provides a standard stack ef-
fect syntax and enforces the declared stack effects of words,
as in StrongForth and Cat. In Factor, with very few excep-
tions, words must pop a fixed number of inputs off the stack,
and push a fixed number of outputs onto the stack. Row-
polymorphic combinators, described below, and macros, de-
scribed in 2.3.2, are the only two exceptions to this rule.
Stack effects are checked and enforced by a kind of type
system in the language implementation, known as the stack
checker.

Stack languages with higher-order functions and static
stack checking encounter a unique type of polymorphism:
a higher order function may sometimes accept quotation
parameters with different stack effects, which affect the
overall stack effect of the combinator. For example, the
each combinator as described in 2.1.2 would have a stack
effect of (seq quot --) and take a quotation of ef-
fect (elt --). However, on every application of each,
the elt input is presented above the rest of the stack,
and the quotation can read and replace additional stack
values below the element in a way that maintains the
stack balance. each can thus take a quotation with effect
(x elt -- x’), (x y elt -- x’ y’), and so on.
This allows code using looping combinators such as each
to pass values between iterations. The overall stack effect
of each in these cases becomes (x seq quot -- x’),
(x y seq quot -- x’ y’), and so on. This type of
polymorphism is referred to as row polymorphism, due to
influence from Cat’s row-polymorphic type system[14].

Factor has a special notation for row-polymorphic stack
effects. If the list of inputs or outputs begins with a token
of the form ..a, where a is any character, that token rep-
resents a row variable comprising multiple inputs or out-
puts. Quotation inputs can also be given stack effects in the
form name: (inputs -- outputs), and row variables
in those nested stack effects will be unified with row vari-
ables of the same name in the outer stack effect or other
nested stack effects. The full row-polymorphic stack effect
of each is thus:

(..a seq quot (..a elt -- ..a) -- ..a)

2.1.4 The Stack Checker

Factor’s stack checker performs an abstract interpretation
of the input program, simulating each word’s effect on the
stack. When conditional branches are encountered, both
branches are evaluated and unified; a unification failure in-
dicates that the two branches leave with inconsistent stack
heights, which is a compile-time error.

The stack checker must be able to handle row polymor-
phism. The current approach is to inline calls to all words

which call quotations of indeterminate stack effect so that
the quotations that they call can be inlined. The inlining of
words is driven by declarations. The stack checker tracks the
flow of constants in a program in a simple, pessimistic way,
and can inline quotations with this mechanism. If it finds a
quotation that it cannot inline, but it must, then it rejects the
program. This inlining is not just an optimization; some code
is invalid without inlining.

Of course, not all programs can be written this way. In
some cases, the invoked quotation may not be known until
runtime. For this, there are two “escape hatches.” One mech-
anism is to declare the stack effect of the quotation at its
call site. The stack effect will be checked at runtime. In this
case, the quotation does not need to be inlined. Quotations
are normally called with the word call, and an effect can be
specified with the syntax call(--). Alternatively, a quo-
tation can be called with a user-supplied datastack, using the
with-datastack word. This is useful for implementing a
read-eval-print loop (Section 3.1).

We believe that a mechanism for checking the stack depth
of programs is a necessary tool for concatenative program-
ming languages. In concatenative languages without static
stack checking, incorrect use of the stack can lead to hard-
to-discover bugs. In the absence of static checking, if a caller
expects a word to have a certain effect on the height of
the stack, and to only change a particular number of items
on the stack, then the programmer writing the calling code
must write unit tests covering every possible code path in the
callee word. While good test coverage is a desirable property
to have in any software system, it can be difficult achieving
full test coverage in practice.

2.1.5 Dataflow Combinators

Many stack languages provide a set of words for re-arranging
operands at the top of the stack. These words can be used to
glue other words together. A typical set of shuffle words is
provided as part of Factor:

• drop (x --)

• dup (x -- x x)

• over (x y -- x y x)

• swap (x y -- y x)

By convention, the stack effects of shuffle words use names
in the stack effect inputs and outputs to indicate how the
objects are reordered on the stack; for example, swap ex-
changes the positions of the top two stack elements, as indi-
cated by its effect (x y -- y x).

One downside of shuffle words is that understanding long
expressions requires the reader to maintain and manipulate
a mental model of the stack, making code with complex
dataflow hard to write and to understand. This is a common
objection programmers have to programming in stack-based
languages. Factor provides an alternative facility, inspired by
Joy[44], consisting of three fundamental kinds of combina-

46

TUPLE: edge face vertex opposite-edge next-edge ;
...
[vertex>>] [opposite-edge>> vertex>>] bi

Figure 4: Cleave combinators being used to call multiple slot
accessors on a single object on the stack

: check-string (obj -- obj)
dup string? ["Not a string" throw] unless ;

: register-service (name realm constructor --)
[check-string] [] [call(-- value)] tri*
... ;

Figure 5: Spread combinators being used to change objects
at the top of the stack

tor that encapsulate common, easy-to-understand dataflow
patterns.

• cleave takes as input a single value along with an array
of quotations and calls each quotation in turn on that
value.
5 { [1 +] [2 -] } cleave
→ 6 3

• spread takes series of objects on the stack along with
an array of an equal number of quotations and calls each
quotation on the corresponding object.
"A" "b" { [>lower] [>upper] } spread
→ "a" "B"

• napply takes a series of objects on the stack together
with a single quotation and an integer as input and calls
each quotation with the value. The number of values is
determined by the integer.
"A" "B" [>lower] 2 napply
→ "a" "b"

Shorthand forms are also available for binary and ternary
cases. They are not strictly necessary, but they avoid the
slight verbosity of the additional tokens { and } used to de-
limit arrays. They follow a naming scheme where the short-
hand cleave combinators taking two and three quotations are
named bi and tri, spread combinators are named bi* and
tri*, and apply combinators are named bi@ and tri@. In
Figure 3, the tail-factorial word uses bi to reuse its n
value, first multiplying it into the accumulator input and
then adding 1 to it before tail-calling itself to start a new
iteration.

A canonical use case for cleave is to extract objects from
tuple slots as in Figure 4. spread is frequently used to pre-
process or make assertions about inputs to words. In Figure
5, name must be a string, and constructor is replaced with
a single object it produces when called.

:: frustum-matrix4 (xy-dim near far -- matrix)
xy-dim first2 :> (x y)
near x / :> xf
near y / :> yf
near far + near far - / :> zf
2 near far * * near far - / :> wf

{
{ xf 0.0 0.0 0.0 }
{ 0.0 yf 0.0 0.0 }
{ 0.0 0.0 zf wf }
{ 0.0 0.0 -1.0 0.0 }

} ;

Figure 6: Constructing a perspective projection matrix, using
local variables

2.1.6 Pictured Partial Application Syntax

We propose a syntax for the construction of point-free clo-
sures in a stack-based language. In Factor, quotations do not
close over an environment of values; pushing a quotation on
the operand stack does not allocate any memory and quota-
tions are effectively literals in the source code. Factor has an
additional facility for constructing new quotations from val-
ues on the stack; this resembles lexical closures in applica-
tive languages. A “quotation with holes” can be written by
prefixing it with ’[, and using to refer to values which are
to be filled in from the stack when the quotation is pushed.
The following two lines are equivalent:

5 ’[_ +]
[5 +]

2.1.7 Lexically Scoped Variables

With a few operations to shuffle the top of the stack, as well
as the previously-mentioned dataflow combinators, the stack
can be used for all dataflow and there is no need for local
variables. In practice, some code is easier to express with
local variables, so Factor includes support for local variables
and lexical closures.

A word with named input parameters can be declared
with the :: token in place of :. Whereas normally, the names
of input parameters in the stack effect declaration have no
meaning, a word with named parameters makes those names
available in the lexical scope of the word’s definition. Within
the scope of a :: definition, additional lexical variables can
be bound using the :> operator, which binds either a single
value from the datastack to a name, or multiple stack values
to a list of names surrounded by parentheses. Literal array
and tuple syntax can include lexical variable names and
construct data structures from lexical variable values.

Numerical formulas often exhibit non-trivial dataflow and
benefit in readability and ease of implementation from using
local variables. For example, Figure 6 constructs a perspec-

47

tive projection matrix for three-dimensional rendering. This
would be somewhat awkward with purely stack-based code.

We have found lexical variables useful only in rare cases
where there is no obvious solution to a problem in terms
of dataflow combinators and the stack. Out of 38,088 word
and method definitions in the source code of Factor and
its development environment at the time of this writing,
310 were defined with named parameters. Despite their low
rate of use, we consider lexical variables, and in particular
lexically-scoped closures, a useful extension of the concate-
native paradigm.

2.2 Organizing Programs

Whereas many languages, notably Java, combine their mod-
ule system and type system, Factor separates the two con-
cepts to maximize flexibity and modularity of code. Vo-
cabularies provide modularity, source code organization,
and namespaces. Independent of source code organization,
classes and generic words organize the data types and oper-
ations of a program at run time.

2.2.1 Vocabularies

Factor code is organized in a system of nested modules
called vocabularies. Like Java packages [27], Factor vocab-
ularies have an on-disk directory structure corresponding to
their module structure. A vocabulary contains zero or more
definitions. The most common definitions are word defini-
tions.

Every source file must explicitly specify all vocabularies
it uses; only word names defined in these vocabularies will
be in scope when the file is parsed. Any vocabulary depen-
dencies which have not been loaded are loaded automati-
cally.

Factor’s vocabulary system does not provide language-
enforced privacy. There is a syntactic mechanism to mark
words as private, which places them in a separate sub-
vocabulary. External code can still access this private vocab-
ulary by explicitly specifying it. The choice not to enforce
real privacy was done in order to maximize flexibility and
interactivity.

2.2.2 Object System

Factor is a purely object-oriented programming language
in the same sense as Smalltalk or Ruby: Every value is an
object with an intrinsic type that participates in dynamic dis-
patch, and basic operations like array access, arithmetic and
instance variable lookup are done through dynamically dis-
patched method calls. However, unlike Smalltalk or Ruby,
Factor does not specially distinguish a receiver object for
method calls. As in CLOS, there is no object or class that
“owns” a method. Instead, special words called generic
words have multiple implementations, called methods, based
on the classes of their arguments. Generic words offer more
flexibility than traditional message passing:

TUPLE: circle radius ;
TUPLE: rectangle length width ;
GENERIC: area (shape -- area)
M: circle area

radius>> dup * pi * ;
M: rectangle area

[length>>] [width>>] bi * ;

Figure 7: Shapes and their area

• Methods on a generic word may be defined in the same
file as a class or in a different file. This allows new
generic words to dispatch on existing classes. It is also
possible to define new classes with methods on existing
generic words defined in the file where the class is de-
fined.

• More complicated kinds of classes are possible. Predicate
classes [17] fit into this model very easily.

• Multiple dispatch is natural to express. Though the core
Factor object system does not yet implement multiple
dispatch, it is available in an external library.

Factor’s object system is implemented in Factor and can be
extended through a meta-object protocol. Factor has three
types of classes: primitive classes, tuple classes, and de-
rived classes. Primitive classes are used for objects like
strings, numbers, and words. These cannot be subclassed.
Tuple classes are records with instance variables and single
inheritance. They form a hierarchy rooted at the class tuple.
Figure 7 shows a simple use of tuple classes to model shapes
and a generic word to calculate their area.

Primitive classes and tuple classes both use method calls
to access instance variables. For an instance variable called
foo, the generic word to read the variable is called foo>>,
and the generic word to write it is called >>foo.

Classes in Factor are not just record definitions; they
are abstract sets of objects. Derived classes offer a way to
specify new classes in terms of existing ones. A predicate
class is a subclass of another class consisting of instances
satisfying a predicate. A union class consists of the union
of a list of classes, and an intersection class consists of the
intersection of a list of classes.

A particular case of union classes is mixins. A mixin is
an extensible union class. Mixins are used to share behavior
between an extensible set of classes. If a method is defined
on a mixin, then the definition is available to any class
which chooses to add itself to the mixin. One particular use
of mixins is to mark a set of classes which all implement
methods on a set of generic words. Though Factor has no
fixed construction for an interface as in Java, an informal
protocol consisting of a set of generic words combined with
a mixin to mark implementors is idiomatically used for the
same purpose.

48

In Factor’s standard library, compile-time metaprogram-
ming is used to define several new features in the object sys-
tem. This allows the core object system to remain simple
while giving users access to advanced features.

The delegate library implements the Proxy Pattern [26].
The programmer can define a protocol and declare a class to
delegate to another class using a piece of code to look up the
delegate. The library will generate methods for each generic
word in the protocol to perform the delegation. This reduces
the amount of boilerplate code in the program. There are
also libraries for the terse declaration of algebraic datatypes,
for a limited form of multiple inheritance, and for multiple
dispatch methods.

The Factor standard library uses the object system heav-
ily. Arrays, vectors, strings and other types of sequences are
abstracted as a set of generic words and a mixin class, to-
gether comprising the sequence protocol. There are similar
protocols for associative mappings and for sets. One use case
of these protocols is to make virtual sequences (or virtual as-
sociative mappings or virtual sets): objects which satisfy the
sequence protocol but do not actually physically store their
elements. One example of a virtual sequence is a range of in-
tegers with a given start, end, and step. Below is a definition
of the factorial function using a range, which is much easier
to read than the definition in Figure 3. The product word
uses the sequence protocol to multiply together the elements
of any object implementing the protocol.

: factorial (n -- n!)
[1,b] product ;

2.3 Ahead-of-time Metaprogramming

The philosophy of Factor’s metaprogramming and reflec-
tion facilities is that users should be able to extend the lan-
guage with the same mechanisms used to implement the lan-
guage itself. This maximizes expressiveness while minimiz-
ing code duplication between the language implementation
and its metaprogramming API.

Factor’s syntax is entirely defined using parsing words
written in Factor itself, and users can add their own parsing
words to extend Factor’s syntax. Additionally, Factor pro-
vides macros, which are used like ordinary words but per-
form partial evaluation on their first few parameters. Func-
tors allow generic programming, and can be used to create
classes or vocabularies parameterized by a list of arguments.

These three features allow for an alternative model of
metaprogramming from that of C++ [41] or of scripting lan-
guages like Ruby [42]. Factor offers high runtime perfor-
mance using a static compiler while maintaining flexibil-
ity. Like Ruby, this feature uses ordinary Factor code, rather
than a restricted special language like C++ templates. Unlike
Ruby, metaprogramming takes place explicitly before com-
pilation, allowing an ahead-of-time compiler to be effective
in optimizing the code, as in C++. We have not found cases

TUPLE: product id quantity price ;

: make-product-tag (product -- xml)
[id>>] [quantity>>] [price>>] tri
[XML

<product
id=<->
quantity=<->
price=<->

/>
XML] ;

: make-product-dump (products -- xml)
[make-product-tag] map
<XML

<products><-></products>
XML> ;

Figure 8: Dumping a sequence of products as XML

where we wanted to use runtime metaprogramming rather
than Factor’s approach.

It is common to use parsing words, macros and functors
in conjunction. A parsing word might trigger the invocation
of a functor, which in turn might expand into code contain-
ing macros. For example, the SPECIALIZED-ARRAY: syn-
tax invokes a functor to create a specialized array type, a
data structure designed to contain binary data in a specified
packed format, similar to C++’s templated std::vector
data structure.

2.3.1 Parsing Words

Factor’s syntax is based on the Forth programming language.
A program is a stream of whitespace-separated tokens. Some
of these tokens are simple literals, like numbers or strings.
Some tokens are words called at runtime. And some tokens
are words run during parsing, called parsing words.

Parsing words can perform arbitrary computation, and
usually make use of the parser API to read tokens from the
source file and the word definition API to define new words.
One use for parsing words is to create compound literals.
For example, { is a parsing word which scans until the next
matched } and creates an array consisting of the objects in
between the brackets.

Parsing words are also used to implement definitions. The
parsing word : defines a new word, by reading the stack
effect and word body, and then storing the definition in the
current vocabulary.

In the Factor standard library, the <XML parsing word cre-
ates a literal document in the eXtensible Markup Language
(XML) [20], with special syntax for objects to be spliced
into the document. The similar [XML parsing word creates
an XML fragment which can be embedded in a larger docu-
ment. XML literals have become a popular feature in new

49

SYNTAX: $[
parse-quotation call(-- value) suffix! ;

Figure 9: The parsing word $[allows arbitrary computation
in-line at parse-time

programming languages such as Scala [19] and as addi-
tions to existing programming languages such as E4X [15].
In contrast to those languages, we were able to implement
XML literals purely as a library feature. Figure 8 demon-
strates a word which takes a sequence of product tuples,
generating an XML document listing quantities and prices.
Note that within an XML fragment, <-> is used to take an
argument from the stack, in a manner similar to the pictured
partial application syntax discussed in Section 2.1.6.

As another example of Factor’s metaprogramming capa-
bility, local variables are also implemented as a user-level
library. The implementation converts code using locals to
purely stack-based code.

As an example of creating a parsing word, Figure 9 shows
how to create a parsing word to do arbitrary computation at
parse-time. The word parse-quotation invokes the parser
to return the Factor code between the current location and the
matching]. The word suffix! is used to push the parsed
value onto the parser’s accumulator. Because parsing words
always take and return an accumulator, the stack effect is
implied and unnecessary.

2.3.2 Macros

Macros in Factor are special words which take some of
their input parameters as compile-time constants. Based on
these parameters, the macro is evaluated at compile-time,
returning a quotation that replaces the macro call site. This
quotation may take further parameters from the run-time
stack.

One example of a macro is cond1, used to provide a con-
venient syntax for if-else-if chains. As an argument, cond
takes an array of pairs of quotations, in which the first quota-
tion of each pair is the condition and the second is the corre-
sponding outcome. An example is shown in Figure 10. The
cond macro expands into a series of nested calls to the if
combinator at compile time. Macro expansion is performed
in the stack checker using the same constant propagation
mechanism as quotation inlining (Section 2.1.4). When a
macro invocation is encountered, the macro body is called at
compile time with the constant inputs that it requires. Call-
ing a macro with values that are not known to be constant is
a compile-time error.

This integration with the stack checker gives Factor
macros more flexibility than traditional Lisp macros [28].
Rather than requiring macro parameters to be literals im-

1 For bootstrapping reasons, cond is not implemented like other macros, but
it is conceptually the same.

"libssl" {
{ [os winnt?] ["ssleay32.dll"] }
{ [os macosx?] ["libssl.dylib"] }
{ [os unix?] ["libssl.so"] }

} cond cdecl add-library

Figure 10: Determining the name of the OpenSSL library to
load based on the user’s current platform

mediately present in the syntax, they are only required to
be constants as known by the stack checker. A combina-
tor can call a macro with only some parameters immedi-
ately supplied, as long as the combinator is declared inline
and usages of the combinator supply the necessary compile-
time parameters. A simple example is a composition of the
length word with the case combinator. The case com-
binator takes a sequence of pairs, where the first element
in each pair is a value, and the second is a quotation to be
called if the top of the stack at run time is equal to the value.
We can define the length-case combinator, which takes a
sequence and a sequence of pairs, dispatching on the length
of the sequence:

: length-case (seq cases --)
over length swap case ; inline

2.3.3 Functors

Although parsing words will already let you generate ar-
bitrary code at compile-time, it can be inconvenient to use
the word definition API repeatedly for similar definitions.
The functors library provides syntactic sugar for this, in
a manner that resembles C++ templates but allows for arbi-
trary computation in Factor. Functor syntax also resembles
the quasiquote syntax of Common Lisp [28]. One major us-
age of functors is for the aforementioned specialized arrays
of binary types.

Functors are useful in implementing cords, virtual se-
quence objects that present two underlying sequences as a
single concatenated sequence. The functor in Figure 11 al-
lows a type T-cord to be defined for a sequence type T.
This allows for additional compiler optimization when us-
ing cords of T sequences compared to the non-specialized
generic-cord implementation. The functor defines the
T-cord type with a name derived from the name of the
input type T, and declares the new type as a member of the
cord mixin, allowing it to share method definitions with
generic-cord and other specialized cord types. This func-
tor is used to efficiently emulate 256-bit SIMD vector types
on platforms with only 128-bit hardware vectors.

2.4 Low-level Features

Factor includes many tools for systems programming that
allow for both high-efficiency specialized and high-level
object-oriented patterns of usage. A foreign function inter-
face provides access to procedures written in other languages

50

FUNCTOR: define-specialized-cord (T --)

T-cord DEFINES-CLASS ${T}-cord

WHERE

TUPLE: T-cord
{ head T read-only }
{ tail T read-only } ; final

INSTANCE: T-cord cord

;FUNCTOR

Figure 11: Creating a specialized T-cord virtual sequence
for a type T using a functor

as if they were written in Factor. Binary data can be repre-
sented and manipulated efficiently. A new abstraction called
destructors provides for the automatic disposal of resources.

2.4.1 Foreign Function Interface

Factor has a foreign function interface (FFI) for calling li-
braries written in other programming languages. Factor’s
FFI is inspired by Common Lisp’s CFFI [4]. The FFI can
call functions written in C, Fortran and Objective C. Addi-
tional libraries exist to communicate with Lua, Javascript,
and C++. To call a C function, the type of the fuction merely
has to be declared, as below:

FUNCTION: SSL* SSL_new (SSL_CTX* ctx) ;

When calling foreign functions with dynamically-typed val-
ues, Factor automatically wraps and unwraps binary types
when used as parameters or return values: simple integer and
floating-point types convert automatically between boxed
Factor representations and native binary representations. Bi-
nary data types, described in the next section, are unwrapped
when used as arguments and allocated when returned from
foreign functions. This automatic handling eliminates a class
of bugs present in usages of other languages’ FFI.

2.4.2 Binary Data Support

Factor provides extensive support for binary data, providing
optimized data structures that can be manipulated as ordi-
nary Factor objects. These binary data types are useful for
both communicating with foreign functions and for use in
pure Factor code, for greater performance.

Factor’s library includes three main kinds of objects for
aggregating and manipulating binary data.

• Structs Structured binary containers that provide
slot accessors like Factor’s tuple objects and are declared
like tuples.

• SIMD vectors 128-bit hardware vector types repre-
sented and manipulated as constant-length sequences.

SPECIALIZED-ARRAYS: uchar float ;

TYPED: float>8bit-image (
in: float-array
--
out: uchar-array)
[0.0 1.0 clamp 255.0 * >integer]
uchar-array{ } map-as ;

Figure 12: A word definition with type annotations for input
and output parameters

• Specialized arrays Packed arrays of a specified na-
tive type compatible with the library’s sequences proto-
col.

Factor provides a fundamental set of binary types that
mirror the basic C types. From these primitive types, structs,
specialized arrays, and vectors can be constructed. New
struct types extend this binary type system, allowing ar-
rays of structs or structs containing structs to be instanti-
ated. These objects all provide interfaces compatible with
standard Factor sequences and tuples, so binary data objects
can be used in generic code and manipulated with standard
Factor idioms.

Due to the optimizing compiler (Section 3.4), manipula-
tion of these data structures can approach the performance
of C. The compiler provides primitives for loading, storing,
and operating on native integer, floating-point, and vector
types. When dynamic Factor objects of these types are not
needed, the compiler can operate on them unboxed, keeping
the values in machine registers. Code using these data struc-
tures can be written at a high level, operating on sequence
and tuple-like objects, which the compiler transforms into
C-like direct manipulation of binary data.

For example, the float>8bit-image word given in
Figure 12 uses Factor’s standard generic clamp, *, and
>integer words along with the map-as sequence combina-
tor to convert an array of floating-point image components
with values ranging from 0.0 to 1.0 into eight-bit unsigned
integer components ranging from 0 to 255. With the help
of type annotations on just the word’s input (Section 3.4.2),
Factor generates efficient code without unnecessary over-
head.

2.4.3 Scoped Resource Management

A common problem in garbage-collected languages is that,
although memory management is handled automatically,
there is no provision for automatically releasing external
resources such as file handles or nework connections. As a
result, code for working with external resources is still sus-
ceptible to resource leaks, resource exhaustion, and prema-
ture deallocation. Some languages support finalizers, which
cause garbage collection of an object to run a user-supplied

51

: perform-operation (in out --) ... ;

[
"in.txt" binary <file-reader> &dispose
"out.txt" binary <file-writer> &dispose
perform-operation

] with-destructors

Figure 13: Destructors example

hook which freeing associated external resources. However,
finalizers are inappropriate for some resource cleanup due to
their nondeterminism–for example, the aforementioned file
handles and network connections are limited system-wide
resources and should be deterministically released indepen-
dent of their in-memory object representations. Alternative
deterministic mechanisms for resource management are de-
tailed in Section 5

Factor’s destructors library provides a mechanism for
easy deterministic resource management. Any object with
associated external resources can implement a method on
the dispose generic word to release its resources. The
with-destructors combinator creates a new dynamic
scope and runs a supplied quotation. The quotation can
register disposable objects by calling one of two words,
&dispose or |dispose. The former word always disposes
its parameter when the with-destructors form is exited,
whereas the latter only disposes if the supplied quotation
raises an exception. For example, Figure 13 opens two files
and performs an operation on them, ensuring that both files
are properly closed.

3. Implementation
Factor has an advanced high-performance implementation.
The language is always compiled, using either a simple or
optimizing compiler. Generic dispatch is optimized both by
attempting to statically select a method and through poly-
morphic inline caches. Memory allocation is also optimized
through a combination of static and dynamic techniques, us-
ing compiler optimizations to minimize allocation together
with generational garbage collection to manage the cases
that cannot be eliminated.

3.1 The Interactive Environment

Factor is accompanied by an interactive environment based
around a read-eval-print loop. The environment is built on
top of a GUI toolkit implemented in Factor. Graphical con-
trols are rendered via OpenGL, and issues such as clipboard
support are handled by an abstraction layer with backends
for Cocoa, Windows, and X11. Developer tools provided in-
clude a documentation and vocabulary browser, an object in-
spector, a single stepper and a tool for browsing errors.

When developing a Factor program, it is useful to test
different versions of the program in the interactive environ-

ment. After changes to source files are made on disk, vo-
cabularies can be reloaded, updating word definitions in the
current image. The word refresh-all is used to reload all
files that have changed compared to the currently loaded ver-
sion.

Most dynamic languages allow code reloading by pro-
cessing definitions in a source file as mutating the dictionary
of definitions. Whenever a definition is used, it is looked up
at runtime in the dictionary. There are two problems with
this approach:

• The late binding creates overhead at each use of a defi-
nition, requiring name lookup or extra indirection. Late
binding also hinders optimizations such as inlining.

• Stale definitions remain in memory when definitions are
subsequently removed from a source file, and the source
file is reloaded. This potentially triggers name clashes,
allows space leaks, and causes other problems.

In Factor, the parser associates definitions with source
files, and if a changed source file is reloaded, any definitions
which are no longer in the source file are removed from the
running image. The optimizing compiler coordinates with
the incremental linker capability provided by the VM to
reconcile static optimizations with on-the-fly source code
changes.

When compiling word bodies, the optimizing compiler
makes assumptions about the class hierarchy, object layouts,
and methods defined on generic words. These assumptions
are recorded as dependencies and stored in an inverted in-
dex. When one or more words or classes are redefined inside
a development session, this dependency information is used
to calculate a minimal set of words which require recompi-
lation.

After a word is redefined, the segment of the heap con-
taining compiled code is traversed to update the callers of the
word. This allows Factor to use early binding while main-
taining the illusion of late binding.

Tuples use an array-based layout while remaining com-
patible with redefinition, giving the illusion of a more flex-
ible layout. This is achieved by performing a full garbage
collection when a tuple class is redefined, allocating differ-
ent amounts of space for tuples based on what fields have
been added or removed.

3.2 Architecture

The Factor implementation is structured into a virtual ma-
chine (VM) written in C++ and a core library written in
Factor. The VM provides essential runtime services, such as
garbage collection, method dispatch, and a base compiler.
The rest is implemented in Factor.

The VM loads an image file containing a memory snap-
shot, as in many Smalltalk and Lisp systems. The source
parser manipulates the code in the image as new definitions
are read in from source files. The source parser is written in

52

Factor and can be extended from user code (Section 2.3.1).
The image can be saved, and effectively acts as a cache for
compiled code.

Values are referenced using tagged pointers [29]. Small
integers are stored directly inside a pointer’s payload. Large
integers and floating point numbers are boxed in the heap;
however, compiler optimizations can in many cases elimi-
nate this boxing and store floating point temporaries in regis-
ters. Specialized data structures are also provided for storing
packed binary data without boxing (Section 2.4).

Factor uses a generational garbage collection strategy to
optimize workloads which create large numbers of short-
lived objects. The oldest generation is managed using a
mark-sweep-compact algorithm, with younger generations
managed by a copying collector [46]. Even compiled code is
subject to compaction, in order to reduce heap fragmentation
in applications which invoke the compiler at runtime, such
as the development environment. To support early binding,
the garbage collector must modify compiled code and the
callstack to point to newly relocated code.

Run-time method dispatch is handled with polymorphic
inline caches [32]. Every dynamic call site starts out in
an uninitialized cold state. If there are up to three unique
receiver types, a polymorphic inline cache is generated for
the call site. After more than three cache misses, the call site
transitions into a megamorphic call with a cache shared by
all call sites.

All source code is compiled into machine code by one
of two compilers, called the base compiler and optimizing
compiler. The base compiler is a context threading compiler
implemented in C++ as part of the VM, and is mainly used
for bootstrapping purposes. The optimizing compiler is writ-
ten in Factor and is used to compile most code.

Factor is partially self-hosting and there is a bootstrap
process, similar to Steel Bank Common Lisp [38]. An im-
age generation tool is run from an existing Factor instance
to produce a new bootstrap image containing the parser, ob-
ject system, and core libraries. The Factor VM is then run
with the bootstrap image, which loads a minimal set of li-
braries which get compiled with the base compiler. The op-
timizing compiler is then loaded, and the base libraries are
recompiled with the optimizing compiler. With the optimiz-
ing compiler now available, additional libraries and tools
are loaded and compiled, including Factor’s GUI develop-
ment environment. Once this process completes, the image
is saved, resulting in a full development image.

3.3 Base Compiler

The primary design considerations of the base compiler are
fast compilation speed and low implementation complexity.
As a result, the base compiler generates context-threaded
code with inlining for simple primitives [3], performing a
single pass over the input quotation.

The base compiler generates code using a set of machine
code templates for basic operations such as creating and

tearing down a stack frame, pushing a literal on the stack,
making a subroutine call, and so on. These machine code
templates are generated by Factor code during the bootstrap
process. This allows the base and optimizing compilers to
share a single assembler backend written in Factor.

3.4 Optimizing Compiler

The optimizing compiler is structured as a series of passes
operating on two intermediate representations (IRs), referred
to as high-level IR and low-level IR. High-level IR represents
control flow in a similar manner to a block-structured pro-
gramming language. Low-level IR represents control flow
with a control flow graph of basic blocks. Both intermediate
forms make use of single static assignment (SSA) form to
improve the accuracy and efficiency of analysis [12].

3.4.1 Front End

High-level IR is constructed by the stack effect checker.
Macro expansion and quotation inlining is performed by
the stack checker online while high-level IR is being con-
structed. The front end does not deal with local variables, as
these have already been eliminated.

3.4.2 Soft Typing

When static type information is available, Factor’s compiler
can eliminate runtime method dispatch and allocation of in-
termediate objects, generating code specialized to the under-
lying data structures. This resembles previous work in soft
typing [10]. Factor provides several mechanisms to facilitate
static type propagation:

• Functions can be annotated as inline, causing the com-
piler to replace calls to the function with the function
body.

• Functions can be hinted, causing the compiler to gener-
ate multiple specialized versions of the function, each
assuming different input types, with dispatch at the en-
try point to choose the best-fitting specialization for the
given inputs.

• Methods on generic functions propagate the type infor-
mation for their dispatched-on inputs.

• Functions can be declared with static input and output
types using the typed library.

3.4.3 High-level Optimizations

The three major optimizations performed on high-level IR
are sparse conditional constant propagation (SCCP [45]),
escape analysis with scalar replacement, and overflow check
elimination using modular arithmetic properties.

The major features of our SCCP implementation are an
extended value lattice, rewrite rules, and flow sensitivity.
Our SCCP implementation augments the standard single-
level constant lattice with information about object types,
numeric intervals, array lengths and tuple slot types. Type

53

transfer functions are permitted to replace nodes in the IR
with inline expansions. Type functions are defined on many
of the core language words.

SCCP is used to statically dispatch generic word calls by
inlining a specific method body at the call site. This inlining
generates new type information and new opportunities for
constant folding, simplification and further inlining. In par-
ticular, generic arithmetic operations which require dynamic
dispatch in the general case can be lowered to simpler opera-
tions as type information is discovered. Overflow checks can
be removed from integer operations using numeric interval
information. The analysis can represent flow-sensitive type
information. Additionally, calls to closures which combina-
tor inlining cannot eliminate are eliminated when enough in-
formation is available [16].

An escape analysis pass is used to discover object alloca-
tions which are not stored on the heap or returned from the
current function. Scalar replacement is performed on such
allocations, converting tuple slots into SSA values.

The modular arithmetic optimization pass identifies in-
teger expressions in which the final result is taken to be
modulo a power of two and removes unnecessary overflow
checks from any intermediate addition and multiplication
operations. This novel optimization is global and can operate
over loops.

3.4.4 Low-level Optimizations

Low-level IR is built from high-level IR by analyzing control
flow and making stack reads and writes explicit. During this
construction phase and a subsequent branch splitting phase,
the SSA structure of high-level IR is lost. SSA form is recon-
structed using the SSA construction algorithm described in
[8], with the minor variation that we construct pruned SSA
form rather than semi-pruned SSA, by first computing live-
ness. To avoid computing iterated dominance frontiers, we
use the TDMSC algorithm from [13].

The main optimizations performed on low-level IR are
local dead store and redundant load elimination, local value
numbering, global copy propagation, representation selec-
tion, and instruction scheduling.

The local value numbering pass eliminates common sub-
expressions and folds expressions with constant operands
[9]. Following value numbering and copy propagation, a
representation selection pass decides when to unbox floating
point and SIMD values. A form of instruction scheduling
intended to reduce register pressure is performed on low-
level IR as the last step before leaving SSA form [39].

We use the second-chance binpacking variation of the lin-
ear scan register allocation algorithm [43, 47]. Our variant
does not take φ nodes into account, so SSA form is destruc-
ted first by eliminating φ nodes while simultaneously per-
forming copy coalescing, using the method described in [6].

3.5 Evaluation

We compared the performance of the current Factor imple-
mentation with four other dynamic language implementa-
tions:

• CPython 3.1.22, the primary Python implementation.

• SBCL 1.0.383, a Common Lisp implementation.

• LuaJIT 2.0.0beta44, a Lua implementation.

• V8 (SVN revision 4752)5, a JavaScript implementation.

To measure performance, we used seven benchmark pro-
grams from the Computer Language Benchmark Game [25].
Benchmarks were run on an Apple MacBook Pro equipped
with a 2.4 GHz Intel Core 2 Duo processor and 4GB of
RAM. All language implementations were built as 64-bit
binaries. The JavaScript, Lua and Python benchmarks were
run as scripts from the command line, and the Factor and
Common Lisp benchmarks were pre-compiled into stand-
alone images.6

The results are shown in Figure 147. The benchmarks
demonstrate that Factor’s performance is competitive with
other state-of-the-art dynamic language implementations.
Factor’s relatively good performance can be explained by
various aspects of its implementation.

• The ahead-of-time optimizing Factor compiler (Section
3.4), in these cases, is able to eliminate the same overhead
of dynamic language features that the V8 and LuaJIT
JITs do at runtime.

• binarytrees is heavy in allocation, so Factor’s array-
based layout for tuples helps performance (Section 3.1).

• The Factor compiler can generate code using SIMD
instructions (Section 2.4), improving performance on
nbody.

• Native code generation makes Factor, like LuaJIT, SBCL
and V8, significantly faster than Python on all but three
benchmarks, where most of Python’s time is spent in
library functions written in C.

4. Evolution
The Factor language and implementation has evolved sig-
nificantly over time. The first implementation of Factor was
hosted on the Java Virtual Machine and used as a scripting
language within a larger Java program. As a result, the first
iteration of the language was rather minimal, with no direct

2 http://www.python.org
3 http://www.sbcl.org
4 http://luajit.org
5 http://code.google.com/p/v8/
6 More details about the test setup can be found online at
http://factor-language.blogspot.com/2010 05 01 archive.html.
7 The Languge Benchmark Game lacks a Lua implementation of regexdna.

54

Factor LuaJIT SBCL V8 Python
binarytrees 1.764 6.295 1.349 2.119 19.88
fasta 2.597 1.689 2.105 3.948 35.23
knucleotide 1.820 0.573 0.766 1.876 1.805
nbody 0.393 0.604 0.402 4.569 37.08
regexdna 0.990 —— 0.973 0.166 0.874
revcomp 2.377 1.764 2.955 3.884 1.669
spectralnorm 1.377 1.358 2.229 12.22 104.6

Figure 14: The time in seconds taken to run seven bench-
marks on five language implementations

support for user-defined types, generic functions, local vari-
ables, or automatic inclusion of vocabulary dependencies.

As the focus of the language shifted from embedded
scripting to application development, new features were
added and existing features were redesigned to better support
larger codebases. Rather than design language features up-
front, new features have been added incrementally as needed
for the compiler and standard library. Language changes can
usually be implemented as user-level libraries and move into
the core of the language only at the point where it is deemed
useful to use the feature in the implementation of the lan-
guage itself. This type of evolution is only possible because
of Factor’s extensive metaprogramming capabilities.

For example, hashtables and structures from cons cells
were originally used in place of objects. To address the prob-
lems that this created in writing larger programs, a library for
generic words and user-defined types was created. This was
later moved into the core of the language, and the standard
library now uses object-oriented techniques extensively.

The stack checker was initially optional and significant
bodies of code did not pass the stack checker. Later, with the
addition of call(--), it became practical to require all
code to pass the stack checker. This change immediately led
to the discovery and repair of numerous infrequent bugs in
the standard library.

We moved away from the JVM as a host platform due to a
lack of support for tail-call optimization, continuations, and
certain forms of dynamic dispatch. The switch to a native im-
plementation improved performance significantly. Compiler
optimizations and virtual machine improvements have been
added to address performance bottlenecks in running pro-
grams. As more advanced optimizations have been added,
the time it takes to compile the Factor development environ-
ment has remained roughly constant, following [24].

5. Related Work
Others have approached the problem of eliminating stack ef-
fect bugs (Section 2.1.4) in terms of adding a full-fledged
static type system to a concatenative language. StrongForth
[2] adds a relatively simple system, and Cat [14] adds a
more detailed type system including support for row poly-
morphism. The design of our stack checker is similar to the

Java Virtual Machine’s bytecode verifier pass, and the invari-
ants imposed on Factor code are similar to those of the Java
Virtual Machine specification [37].

Other languages have syntax for creating anonymous
functions, as in Section 2.1.6. For example Clojure supports
syntax like #(+ 1 %) short for (fn [x] (+ x 1)) [31].
Here, the role of % is the opposite of in Factor, representing
the argument rather than the retained value.

Factor’s object system does not distinguish a receiver in
method calls. Other similar object systems include CLOS
[5], Cecil [11] and Dylan [40]. CLOS, like Factor, allows the
object system to be extended through a meta-object protocol
[35], whereas Cecil is more restrictive.

Parsing words (Section 2.3.1), are similar to Forth’s im-
mediate words. One major difference between Forth and
Factor is that in Forth, control flow is implemented with
immediate words such as IF and THEN; in Factor, control
flow is done with combinators. A second major difference is
that whereas the Forth parser has two modes, compile and
interpret, in Factor there is effectively no interpret mode;
the parser always compiles code into quotations. Even code
entered at the top-level is first compiled into a quotation,
and then the quotation is immediately called and discarded.
Eliminating the two modes from the Forth parser eliminates
the need for so-called state-smart words [18].

Other languages provide mechanisms for resource man-
agement, but we believe these to be more difficult to use than
Factor’s mechanism (Section 2.4.3). In C++, Resource Ac-
quisition is Initialization (RAII) is the technique of using
constructors to acquire resources and destructors to dispose
of them. A stack-allocated object is used to wrap the exter-
nal resource handle; the object’s destructor runs determin-
istically at the end of its scope and deallocates the resource
when the object leaves scope. Common Lisp popularized the
with- idiom: libraries implement scoped resource manage-
ment by enclosing the scope of the allocated resource in
a higher-order function such as with-open-file, which
encapsulates acquiring and releasing the external resource.
This approach doesn’t scale very well if many resources
need to be acquired and released in the same piece of code,
due to the resulting nesting of with- functions. The C# [34]
and Python languages offer special syntax for scoped exter-
nal resources, C#’s using keyword and Python’s with state-
ment, that provide the same functionality as the Common
Lisp idiom, but as a built-in language feature.

Factor’s FFI (Section 2.4.1) is related to several other lan-
guages’ FFIs. Common Lisp’s CFFI [4] is the most simi-
lar and provided a basis for our work. Python Ctypes [21]
provides a more dynamic interface, without the need to pre-
declare functions in a DLL before calling them. Newspeak
Aliens [7] allow similar capabilities to CFFI but with the ad-
dition of an explicit object representing the capability to call
a set of foreign functions, rather than an explicit global one.
A common alternative to foreign function interfaces in dy-

55

namic languages is to create a plug-in for the VM making
new primitives for functions in a foreign library [22], a pro-
cess which SWIG automates [1]. However, such a system
would not be compatible with Factor’s interactive environ-
ment.

Other dynamic languages have provided limited support
for manipulating packed binary data. Languages that offer
binary data support often do not provide as good support
as ordinary language constructs. This is either through a
high-overhead extension library like Python’s Struct [23] or
OCaml’s Bigarray [36], or as a limited extension of their
FFI facilities geared more toward interfacing with native li-
braries than toward high-performance data manipulation. By
contrast, Factor’s support for binary data is much stronger
(Section 2.4.2).

6. Conclusion
We have demonstrated Factor, a new dynamic stack-based
object-oriented programming language. Factor incorporates
features from many different previous languages systems
into a new product combining their advantages. Factor has
a very flexible object system and metaprogramming model,
allowing the best coding style to be used for the job. It com-
bines tools for dealing with bits and foreign function calls
with high-level programming tools in the same language, of-
fering the best of both worlds. Its advanced optimizing com-
piler makes it realistic to implement high-performance pro-
grams with few or no type declarations. Taken all together,
these features make Factor a system that allows complex,
high-performance programs to be constructed rapidly and
easily.

7. Acknowledgments
We thank Eduardo Cavazos for the first implementations of
dataflow combinators and pictured partial application syntax
in Factor. We would also like to thank Doug Coleman for his
technical and financial support of the Factor project, as well
as the 50 other contributors to the Factor project. Additional
thanks to the many people who reviewed this paper and
helped us prepare it for publication.

References
[1] Dave Beazley and et al. Simplified wrapper and interface

generator. http://www.swig.org/, 2010.

[2] Stephan Becher. StrongForth homepage.
http://home.vrweb.de/stephan.becher/forth/,
2008.

[3] Marc Berndl, Benjamin Vitale, Mathew Zaleski, and An-
gela Demke Brown. Context Threading: A Flexible and Effi-
cient Dispatch Technique for Virtual Machine Interpreters. In
In CGO ’05: Proceedings of the international symposium on
Code generation and optimization, pages 15–26. IEEE Com-
puter Society, 2005.

[4] James Bielman and Luı́s Oliveira. CFFI
– The Common Foreign Function Interface.
http://common-lisp.net/project/cffi/, 2010.

[5] Daniel G. Bobrow and Gregor Kiczales. The Common Lisp
Object System metaobject kernel: a status report. In LFP ’88:
Proceedings of the 1988 ACM conference on LISP and func-
tional programming, pages 309–315, New York, NY, USA,
1988. ACM.

[6] Benoit Boissinot, Alain Darte, Fabrice Rastello,
Benoit Dupont de Dinechin, and Christophe Guillon.
Revisiting Out-of-SSA Translation for Correctness, Code
Quality and Efficiency. In CGO ’09: Proceedings of the
7th annual IEEE/ACM International Symposium on Code
Generation and Optimization, pages 114–125, Washington,
DC, USA, 2009. IEEE Computer Society.

[7] Gilad Bracha, Peter Ahe, Vassili Bykov, Yaron Kashai,
and Eliot Miranda. The newspeak programming platform.
http://bracha.org/newspeak.pdf, 2008.

[8] Preston Briggs, Keith D. Cooper, Timothy J. Harvey, and
L. Taylor Simpson. Practical improvements to the construc-
tion and destruction of static single assignment form. Softw.
Pract. Exper., 28(8):859–881, 1998.

[9] Preston Briggs, Keith D. Cooper, and L. Taylor Simpson.
Value numbering. Softw. Pract. Exper., 27(6):701–724, 1997.

[10] Robert Cartwright and Mike Fagan. Soft typing. In PLDI ’91:
Proceedings of the ACM SIGPLAN 1991 conference on Pro-
gramming language design and implementation, pages 278–
292, New York, NY, USA, 1991. ACM.

[11] Craig Chambers. The Cecil language: Specification and ratio-
nale. Technical report, University of Washington, 1993.

[12] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Weg-
man, and F. Kenneth Zadeck. Efficiently computing static
single assignment form and the control dependence graph.
ACM Transactions on Programming Languages and Systems,
13:451–490, 1991.

[13] Dibyendu Das and U. Ramakrishna. A practical and fast iter-
ative algorithm for φ-function computation using DJ graphs.
ACM Trans. Program. Lang. Syst., 27(3):426–440, 2005.

[14] Christopher Diggins. The Cat Programming Language.
http://www.cat-language.com/, 2007.

[15] ECMA. ECMAScript for XML (E4X) Specification, 2005.

[16] Daniel Ehrenberg. Closure elimination as constant propaga-
tion. Programming Language Design and Implementation,
Student Research Contest, 2010.

[17] Michael Ernst, Craig Kaplan, and Craig Chambers. Predicate
Dispatching: A Unified Theory of Dispatch. In ECCOP ’98:
Proceedings of the 12th European Conference on Object-
Oriented Programming, pages 186–211, London, UK, 1998.
Springer-Verlag.

[18] M. Anton Ertl. State-smartness — Why it is Evil and How to
Exorcise it. In EuroForth ’98, 1998.

[19] Martin Odersky et. al. The Scala Language Specification.
Technical report, EPFL Lausanne, Switzerland, 2004.

[20] Tim Bray et. al. Extensible Markup Language (XML) 1.0
(fifth edition). World Wide Web Consortium, 2008.

56

[21] Python Software Foundation. ctypes –
A foreign function library for Python.
http://docs.python.org/library/ctypes.html,
2010.

[22] Python Software Foundation. Python/C API Reference Man-
ual. http://docs.python.org/library/ctypes.html,
2010.

[23] Python Software Foundation. struct – In-
terpret strings as packed binary data.
http://docs.python.org/library/struct.html,
2010.

[24] Michael Franz. Compiler Optimizations Should Pay for
Themselves. In P. Schulthess, editor, Advances in Modu-
lar Languages: Proceedings of the Joint Modular Languages
Conference, 1994.

[25] Brent Fulgham. Computer Language Benchmarks Game.
http://shootout.alioth.debian.org/, 2010.

[26] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional, 1994.

[27] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java
Language Specification. Addison Wesley, 3rd edition, 2005.

[28] Paul Graham. On Lisp. Prentice Hall, 1993.

[29] David Gudeman. Representing Type Information in Dynami-
cally Typed Languages, 1993.

[30] Dominikus Herzberg and Tim Reichert. Concatenative Pro-
gramming: An Overlooked Paradigm in Functional Program-
ming. In Proceedings of ICSOFT 2009, 2009.

[31] Rich Hickey. Clojure. http://clojure.org/, 2010.

[32] Urs Hölzle, Craig Chambers, and David Ungar. Optimizing
Dynamically-Typed Object-Oriented Languages With Poly-
morphic Inline Caches. In ECOOP ’91: Proceedings of
the European Conference on Object-Oriented Programming,
pages 21–38, London, UK, 1991. Springer-Verlag.

[33] American National Standards Institute. X3.215-1994, Pro-
gramming Language Forth, 1996.

[34] Ecma International. Standard ECMA-334: C# Language
Specification. 4 edition, 2006.

[35] Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow.
The Art of the Metaobject Protocol, 1991.

[36] Xavier Leroy. The Objective Caml sys-
tem – Documentation and user’s manual.
http://caml.inria.fr/pub/docs/manual-ocaml/.

[37] Tim Lindholm and Frank Yellin. Java Virtual Machine Spec-
ification. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1999.

[38] Christophe Rhodes. SBCL: A Sanely-Bootstrappable Com-
mon Lisp. In Self-Sustaining Systems: First Workshop, S3
2008 Potsdam, Germany, May 15-16, 2008 Revised Selected
Papers, pages 74–86, Berlin, Heidelberg, 2008. Springer-
Verlag.

[39] Vivek Sarkar, Mauricio J. Serrano, and Barbara B. Simons.
Register-sensitive selection, duplication, and sequencing of
instructions. In ICS ’01: Proceedings of the 15th international
conference on Supercomputing, pages 277–288, New York,
NY, USA, 2001. ACM.

[40] Andrew Shalit. The Dylan reference manual: the definitive
guide to the new object-oriented dynamic language. Addison
Wesley Longman Publishing Co., Inc., Redwood City, CA,
USA, 1996.

[41] Bjarne Stroustrup. The C++ Programming Language.
Addison-Wesley, 2000.

[42] Dave Thomas, Chad Fowler, and Andy Hunt. Programming
Ruby: The Pragmatic Programmers’ Guide, 2004.

[43] Omri Traub. Quality and Speed in Linear-Scan Register Allo-
cation. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 142–151. ACM Press,
1998.

[44] Manfred von Thun. Rationale for Joy, a functional language,
2000.

[45] Mark N. Wegman and F. Kenneth Zadeck. Constant propa-
gation with conditional branches. ACM Transactions on Pro-
gramming Languages and Systems, 13:291–299, 1991.

[46] Paul R. Wilson. Uniprocessor Garbage Collection Tech-
niques. In IWMM ’92: Proceedings of the International Work-
shop on Memory Management, pages 1–42, London, UK,
1992. Springer-Verlag.

[47] Christian Wimmer. Linear Scan Register Allocation for the
Java HotSpotTMClient Compiler. Master’s thesis, Institute for
System Software, Johannes Kepler University Linz, 2004.

57

