
Pitfalls of Accurately Benchmarking Thermally Adaptive Chips

Laurel Emurian

⇤

Arun Raghavan

§

Lei Shao

‡

Jeffrey M. Rosen

†

Marios Papaefthymiou

†

Kevin Pipe

†‡

Thomas F. Wenisch

†

Milo Martin

⇤

⇤ Dept. of Computer and Information Science, University of Pennsylvania
† Dept. of Electrical Engineering and Computer Science, University of Michigan

‡ Dept. of Mechanical Engineering, University of Michigan
§ Oracle Labs

Abstract

The performance of today’s chips varies over time due to ac-

tive thermal management and energy conservation policies. Such

changes in performance are necessary in thermally constrained

systems that operate beyond sustainable thermal limits, such as

Intel’s second generation Turbo Boost. This varying performance

creates challenges in accurately benchmarking such systems. This

paper gives examples of potential pitfalls of benchmarking ther-

mally aware systems: extrapolating steady-state performance from

a short run, comparing throughput across program runs of dif-

ferent lengths, and failing to consider recent system activity. We

analyze situations in which these pitfalls can lead to measurement

errors and discuss potential mitigation strategies. We experimen-

tally demonstrate that simple methodological mistakes can result

in measurement errors of 8% or more between steady-state and

instantaneous throughput on a Turbo Boost-enabled system today.

We conclude by discussing the implications of a widening gap be-

tween peak and sustainable performance in future systems, such as

the recently proposed computational sprinting.

1. Introduction

Benchmarking systems accurately has always been challenging due

to measurement bias and system start up costs, such as variability

in cache state and instruction counts [3, 5, 9, 13, 15]. The emer-

gence of thermally aware systems has added new challenges to

benchmarking, such as time-varying workload throughput due to

frequency changes and warm-up periods of up to a few minutes to

reach thermal steady state.

Although dynamically adapting processor operation is imple-

mented almost universally in today’s systems, its impact on mea-

suring performance has grown in prominence with the increasing

power density (watts per unit area) of more recent processors and

the shift to mobile systems. Initial active thermal management poli-

cies throttled performance only in emergencies to prevent an atypi-

cal workload (e.g., a power virus) from overheating the system [6].

As chip power constraints further increased with each generation of

CMOS technology, multicore chips began employing schemes such

as AMD’s PowerNow! and Intel’s first generation Turbo Boost to

sustainably boost the frequency of active cores by borrowing from

the headroom afforded by other idle cores. Although these early

performance policies adapted to changes in system configurations

or certain worst-case workloads, temperature-induced adaptations

were seldom invoked during typical executions, resulting in unper-

turbed steady-state performance for most applications.

With the increase in chip power density, the gap between a sys-

tem’s peak performance configuration and its ability to vent heat

has widened even further. Hence, processors expose their high-

est performance states only temporarily. Intel’s second generation

Turbo Boost boosts frequency for tens of seconds before throt-

Frequency Range

Non-Turbo frequency 1.8 GHz - 2.4 GHz

Turbo mode frequency 2.7 GHz - 3.0 GHz

Table 1. Operating frequencies of “Haswell” core i7 4500U.

tling down to a thermally sustainable level. This paper discusses

how these transient performance states can introduce throughput

estimation errors under the common benchmarking assumptions of

steady-state performance.

We find that even though such systems may employ peak-

performance modes for only a few to several tens of seconds, the

transients persist over several minutes. Such large periods are un-

like the cache or branch-predictor warm-up times, which last for at

most a few seconds, considered by previous work on benchmarking

[7, 15]. These transients add to the subtlety of extrapolating steady-

state performance from shorter runs. In addition, different systems

may implement different adaptation mechanisms, e.g., based on

temperature or weighted average of power over a time window.

In this work, we identify and evaluate benchmarking pitfalls on

a current generation processor equipped with Intel’s second gener-

ation Turbo Boost. This paper enumerates the perils of benchmark-

ing on thermally adaptive systems, making the following contribu-

tions:

1. We demonstrate how extrapolating steady state performance

from a short benchmarking run leads to benchmarking errors.

2. We show that comparing benchmark throughput across runs of

different lengths can lead to false results.

3. We model how long a workload must run to achieve a desired

bound on such measurement error.

4. We demonstrate how failing to consider recent system activity

can falsely deflate performance results and suggest approaches

to ensure a consistent initial state to eliminate error arising from

prior activity.

We note that these pitfalls will likely become more pronounced

as thermally aware systems continue to advance. The impact of the

pitfalls depends on the gap between the boosted and throttled per-

formance. If current trends continue, systems will potentially boost

further past their sustainable power limits, increasing the ratio be-

tween boosted and throttled performance. For example, recent work

on computational sprinting [10, 11] proposes deliberately engineer-

ing future systems to provide sub-second bursts of even larger peak-

performance (up to 10× or more by incorporating phase-change

materials to buffer heat for short durations). As this burst ratio in-

creases, the magnitude of benchmarking pitfalls increases as well.

1



0 20 40 60 80 100

Time (s)

0

5

10

15

P
o
w

er
 (

W
)

(a) Power

0 20 40 60 80 100

Time (s)

0

10

20

30

40

50

T
h
ro

u
g
h
p
u
t

(b) Throughput

Figure 1. Power consumption and throughput with Turbo Boost

enabled. The dotted line indicates that the system throttles down

after approximately 55 seconds.

0 20 40 60 80 100

Time (s)

0

20

40

60

80

T
em

p
 (

C
)

no fan
slow fan
fast fan
throttle

Figure 2. System temperature when run with different fan speeds.

The ’x’ marks when Turbo Boost throttles to a lower frequency. Be-

cause the system throttles down after about 55 seconds regardless

of fan speed, we conclude that temperature does not affect when

Turbo Boost throttles.

2. Background and Analysis of Turbo Boost

In this section, we characterize Turbo Boost behavior on our exper-

imental machine, which we then use to demonstrate benchmarking

pitfalls.

Background. Intel introduced second generation Turbo Boost

with the release of the “Sandy Bridge” processor. Unlike the pre-

vious generation, which boosted frequency only within sustainable

thermal power, second generation Turbo Boost allows processor

power to temporarily exceed the sustainable cooling rate, relying

instead on the system’s ability to buffer the excess heat as compo-

nent temperatures rise over time [1, 10–12]. Because such opera-

tion will eventually drive chip temperature beyond safe margins,

0 20 40 60 80
Time

0

5

10

15

Po
w
er
(W
)

Tt Ti Tb

(a) Power

0 50 100 150 200

Idle time (s)

0

20

40

60

B
o
o
st

 d
u
ra

ti
o
n
 (

s)
(b) Boost Duration

Figure 3. Boost duration after idling for a certain number of sec-

onds. The idle period, T

i

, occurs after a workload has saturated the

power history window. To ensure that the power history window

has been saturated, we allow the workload to run for two minutes

during the throttle period, T

t

. The boost duration, T

b

, is the amount

of time that the workload remains operating at boosted frequency

immediately following the idle period. The power history window

is about 120 seconds long, shown by the graph reaching an asymp-

tote.

the hardware implements a dynamic policy to throttle frequency

down to sustainable limits.

Second generation Turbo Boost operation. Figure 1(a) shows

processor power over time with second generation Turbo Boost

operation on a dual core “Haswell” (Intel Core i7 4500U) laptop.

After prolonged idle time, activating computation at time zero

causes both cores to operate at the boosted frequency of 2.7 GHz.

Correspondingly, the power increases from the idle state draw of

3 W to the boosted power level of 17 W. After 55 s of execution, a

control mechanism on the chip throttles system frequency, reducing

power to the sustainable level of 15 W. Figure 1(b) shows the

corresponding decrease in throughput resulting from the frequency

throttling down to the nominal 2.4 GHz.

Sensitivity to temperature. Despite being motivated primarily

by thermal concerns, we found that the Turbo Boost control policy

implemented by this Intel chip does not depend directly on temper-

ature. Figure 2 shows chip temperature over time with the system

operating with three different fan speeds (including one with the fan

turned off). The hardware throttles all three executions after nearly

the same interval—55 s—regardless of the temperature. Although

temperature-based throttling is invoked as an emergency measure,

we conclude the primary control mechanism for Turbo Boost is not

based on temperature.

Turbo Boost throttle policy. Intel documents that Turbo Boost

throttles frequency based on running average power limit—a

weighted accumulation of energy derived from several activity

monitors [12]. The hardware then ensures that the average power

2



sampled over a time window remains within the expected sustain-

able power limits by raising and lowering frequency. The control

policy is influenced by the boost frequency, duration, and averag-

ing time window. We use a simple microbenchmark to experimen-

tally determine these values. The power trace shown in Figure 3(a)

demonstrates how we ascertained the averaging window. After the

initial boost period, we operate the cores at the sustainable fre-

quency for about 120 seconds, T

t

, after which we vary the idle

time, T

i

, before a repeated execution. We then record how long a

subsequent boost, T

b

, lasts. Figure 3(b) shows the system is always

able to function at the boosted frequency for the entire 55 s duration

when preceeded by at least two minutes of idleness. When running

workloads with Turbo Boost enabled, prior activity on the system

will hence affect the workload performance.

3. Benchmarking Thermally Aware Systems

Consider a scenario in which a programmer runs a simple program

to evaluate the throughput of a system. To remove noise in the data,

the programmer decides to run the program ten times and take the

average of the results. However, after the programmer gets the re-

sults back, the programmer realizes that the performance of the first

and last run differ by about 6%. The programmer decides to repeat

the experiment and run the same program for a longer period of

time. Now there is an 8% difference in throughput between the first

run from the initial (short) set and first run of the second (longer)

set. The throughputs of the first and last run in the second set still

differ by 6%. The programmer begins to wonder if something is

wrong with either the program or the system under test. In fact,

the real issue is that Turbo Boost is enabled on the experimental

system.

In this section, we explore the perils of collecting performance

results on a system that has Turbo Boost enabled. We discuss the

problems of extrapolating performance from a short run, comparing

throughput across program runs of different lengths, and issues

with running multiple back-to-back iterations of one program. We

use a simple 4-threaded saxpy workload that fits in the L1 cache in

our experiments.

For all of the following pitfalls, we could mitigate the problem

with Turbo Boost by disabling it. However, on our system, turning

Turbo Boost off results in the system only running at about 1.8GHz,

which is much less than the 2.4 GHz sustainable frequency that the

system settles at with Turbo Boost enabled. Disabling Turbo Boost

thus may grossly under-report the potential system performance.

Running at a reduced frequency will also underestimate the impact

of memory performance bottlenecks. This option is also not feasi-

ble if one is evaluating performance on a shared machine, in which

a non-root user may not have permission to disable Turbo Boost.

In all of our pitfalls, we suggest solutions that will minimize the

error of performance results. Several of these suggestions involve

running at a constant frequency for the duration of a workload

run. Running during either the boosted frequency or the throttled

frequency is a viable option for running at a constant frequency. We

leave the “correct” choice up to the programmer and their specific

benchmarking goals.

3.1 Pitfall: Extrapolating steady state performance from a

short run

A common benchmarking practice is to warm up before taking

measurements in order to get accurate benchmarking results [15].

This warm up period allows microarchitectural structures (such as

the cache, branch predictor, TLB), and OS file system caches to

reach a steady state before performance measurements are taken.

50 100 150 200 250

Benchmark Runtime (s)

0

2

4

6

8

P
er

ce
n

t 
S

lo
w

d
o

w
n

Figure 4. Percent slowdown of workloads run for increasing

length. As workload length increases, a higher proportion of work-

load runtime is spent running at the throttled frequency resulting in

greater slowdown.

Programs can execute in different phases. Therefore, it is generally

ill-advised to extrapolate entire benchmark performance from trun-

cated runs [7]. In non-thermally-adaptive systems, necessary warm

up times are often on the order of seconds. However, Turbo Boost

requires a warm-up period of at least a minute because the system

boosts to a higher frequency for about a minute. If program perfor-

mance is extrapolated from within this minute, it will be distorted.

In this case, we define a short run as a program that runs for a

minute or less.

Due to the long warm-up period required when Turbo Boost

is enabled, programmers must be careful about extrapolating per-

formance measurements from a run that is tens of seconds long.

Often when running a benchmark, a programmer will assume that

the performance of a short run is equivalent to the performance

of a longer run. For example, if we run a program for 20 seconds

and find that the program does about one unit of work per second (a

throughput metric), we would assume that the same program would

execute one unit of work per second when run for 100 seconds as

well. However, throughput is not the same across these cases if

Turbo Boost is enabled. Turbo Boost throttles frequency after the

system has consumed a certain amount of power, so the frequency

of a long benchmark run will drop during execution. The frequency

of a workload whose runtime fits within the boosting period does

not change, but the frequency of a workload whose runtime does

not fit within the boosting period does change, so the performance

of the two runs is incomparable. The differences in performance

between workload lengths that fit within the boosting period and

those that do not can be significant. When we state differences in

performance, we mean the percentage difference between through-

put of a program run on a machine that does not throttle frequency

and the same program run with Turbo Boost. We will refer to this

percentage in performance difference as performance error.

To experimentally confirm this pitfall, we ran a microbench-

mark for increasing time intervals and recorded the performance of

each run. Figure 4 illustrates the difference in performance error

if a programmer assumes that performance will remain steady at

the boosted frequency. Our microbenchmark runs for about 55 sec-

onds of boosted time before throttling frequency. We can see that

the benchmark instances that run for less than 55 seconds maintain

a constant frequency throughout their run and therefore have sta-

ble performance. However, performance results begin to vary once

workload runtime exceeds 55 seconds. At this point, Turbo Boost

throttles down, causing the workload to run at a lower frequency

for part of its execution. This change in frequency causes up to 8%

change in reported performance from the shortest workload length

to the longest. In other words, if we simply extrapolated the per-

3



formance of our short run to that of a longer run, we would be

overestimating performance by 8%.

Mitigation. To prevent this pitfall, the programmer should be

aware of the length of the boost period and avoid extrapolating

results past the boost period. A second mitigation would be to run

the program for a long enough time that the effects of Turbo Boost

are negligible. However, this run can take up to several minutes,

which is much longer than is typically assumed to be necessary to

avoid startup transients. We discuss how long is “long enough” in

the following section.

3.2 Pitfall: Comparing program runs of different lengths

Next, consider the case of evaluating the performance improvement

in a program as a result of an algorithmic or compiler optimiza-

tion. The relative performance improvement (i.e., speedup) is com-

monly computed as the ratio of the run times of the unoptimized

and optimized versions. The optimized workload, being a shorter

run, spends a larger fraction of its execution time at the boosted

frequency when compared to the longer, unoptimized version. The

observed speedup of a set of optimizations will likely appear larger

when running with Turbo Boost enabled than when run at a con-

stant frequency. Further, this error is largest when the optimized

run fits exactly within the boost window. Below, we quantify this

error in speedup as a function of peak and sustainable throughputs

(i.e., the ratio of boosted and sustainable frequencies).

Let t

t

be the total execution time of the unoptimized program

and t

b

be the total execution time of the optimized program. We

assume that both programs are run after the system has been idle.

Because we seek to quantify the maximum error, we assume that

the runtime of the optimized program is exactly equal to t

b

. Let F

s

be a sustainable frequency. In this case, we consider the speedup

and peak throughput of a both the optimized and unoptimized pro-

gram on a sustainable system running at frequency F

s

. Therefore:

Sustained speedup = S =
t

t

t

b

Sustained unoptimized throughput =
F

s

· t
t

t

t

(1)

= F

s

Sustained optimized throughput =
F

s

· t
b

t

b

= F

s

Consider the same experiment performed with the same set

of optimizations, this time on a boost enabled system. Despite

using the same optimized and unoptimized programs, the resulting

speedup that is reported is now much higher than the speedup

on the sustained system. On the boost enabled system, whereas

the optimized run completes in boosted mode, (i.e., at a boosted

frequency F

b

for the entirety of duration t

b

), the unoptimized run

throttles down to frequency F

s

for the remainder t

t

- t

b

period after

the initial t

b

seconds of boosting. Therefore:

Boosted speedup = S =
t

t

t

b

(pitfall)

Boosted unoptimized throughput =
F

b

· t
b

+ F

s

· (t
t

� t

b

)
t

t

(2)

Boosted optimized throughput =
F

b

· t
b

t

b

= F

b

0 200 400 600 800

Total Time (s)

0

50

100

150

200

%
 P

er
fo

rm
an

ce
 E

rr
o

r

12.5%

25%

200%

Figure 5. Modeled performance difference for a programs run for

a certain duration of where t

b

= 55 seconds and r

boost

is 12.5%,

25%, and 200%. At least twenty minutes is needed for performance

difference to be less than 5% when r

boost

is 25%. This amount of

time increases as r

boost

increases.

Turbo Boost thus inflates the speedup achieved by the optimiza-

tion because the unoptimized baseline on the boosted system com-

pletes some of its execution at a lower frequency than the opti-

mized version, which completes its entire execution at the boosted

frequency. This inflation error can be computed from the ratio of

the relative throughputs of the two unoptimized executions (Equa-

tion 1, Equation 2), the observed speedup (S), and the ratio of

boosted to steady-state frequency as:

Frequency boost ratio = r

boost

=
F

b

F

s

Max Speedup error =
S · r

boost

r

boost

+ (S � 1)
� 1 (3)

For the frequency values in our experimental system (r

boost

=

12.5%), Equation 3 estimates a maximum speedup error of 5.8%

as a result of enabling Turbo Boosts for workloads that nominally

experience a 2× speedup. Further, the error grows with either factor

(i.e., S or r

boost

). For example, doubling the boost frequency ratio

for the same nominal speedup (S = 2×, r

boost

= 25%) increases

maximum performance estimate error of 11%. The same 11% error

would also manifest in an alternative scenario with the original

boost ratio, but a ten-fold increase in speedup at the original boost

ratio (S = 10×, r

boost

= 12.5%).

Proposals like computational sprinting suggest that future ther-

mally constrained systems may boost frequency more aggressively,

(for example r

boost

= 3× or more) [10, 16]. Equation 3 predicts that

such a 3× boost in frequency would cause an error of up to 50% for

programs with a nominal speedup of 2×, and an error of 150% if the

nominal speedup was 10×. Such systems would hence exacerbate

the performance estimation error if the gap between sustainable and

peak frequency continues to widen.

Mitigation. To mitigate this pitfall, we suggest either ensuring

fixed frequency during runs, ensuring fixed workload runtimes or

running a workload long enough that the performance difference

from the change in frequency has subsided. We can achieve con-

stant frequency during runs by either never running a workload

longer than the boost window or by disabling Turbo Boost and pin-

ning each active core to the same frequency. Both methods would

prevent frequency from changing during runtime and would reduce

measurement error.

If it is not possible to run a workload within the boost period

(for example, because the workload cannot complete a run in that

time period or lack of access to Turbo Boost override functions),

then all workloads should be run for the same length of time when

measuring throughput. Each workload run will have a similar ratio

4



0 1 2 3 4 5 6

Iteration

0

2

4

6

8

P
e
rc

e
n

t 
S

lo
w

d
o

w
n

Figure 6. Percent slowdown when workloads are run back-to-

back. The power history of Turbo Boost causes each subsequent

iteration to have a shorter boost duration, leading to decreased

performance.

of boost frequency to throttle frequency, reducing measurement

error.

A third alternative is to run programs for a long time period

such that the performance error is negligible. The equations relating

throughput, total time, boost time, and boost ratio (Equation 1,

Equation 2), can be used to determine the performance error for

a given run length:

Speedup Error =
r

boost

· t
b

+ F

s

· (t
t

� t

b

)
t

t

� 1

Figure 5 illustrates the above trend of performance error decreasing

with execution time for different frequency boost ratios. We fix the

boost window (t

b

) to 55 seconds, which is the average observed

duration on our experimental system. Each line represents a specific

percent difference in boost and throttle frequencies. Our current

system has a difference (r

boost

) of 12.5% between the boosted

frequency and throttled frequency when both cores are active. We

chose a 25% difference because it accurately reflects the difference

between the boosted and throttled frequency for one active core on

our system. Although we have not seen our system throttle when

one core is active, it is possible that such a frequency range will

throttle in the future. We also chose a 200% difference because this

is the boosted frequency difference that sprinting systems such as

computational sprinting may be able to sustain in the future. Other

proposals suggest up to a 15× boost above sustainable thermal

limits [16].

Figure 5 shows that it takes several minutes for the performance

error to be negligible. The first 55 seconds of Figure 5 show no

change in performance error since the total time is within the boost

window and the frequency of the system does not change. After

the system throttles, the frequency lowers to a sustainable level,

so the performance error begins to move towards an asymptote of

zero. If r

boost

equals 12.5%, the performance error is 1% after ten

minutes of workload execution. As r

boost

increases, a workload

must be run for longer periods of time to get a negligible error. For

example, if we wanted to obtain less than 5% performance error

when r

boost

equals 200%, we would have to run a workload for at

least 37 minutes.

3.3 Pitfall: Failing to consider recent activity

When multiple workloads are run back-to-back with Turbo Boost

enabled, as may be done when running a suite of benchmarks,

performance results will be inconsistent. Turbo Boost uses a history

of power consumption to determine when to throttle. Therefore,

the length of a boost depends on the amount of power previously

consumed by the system. We expect a shorter boost period if the

system was not idle immediately before a boost in frequency. In

Section 2 we found that our system takes the power history of

the previous 120 seconds into account. When two consecutive

workloads are run within 120 seconds of one another, the repeated

workload will have a shorter boost period than the initial workload,

affecting performance results.

We run a microbenchmark for 15 seconds for six separate runs

without pausing between each run. We repeat this experiment five

times and average the results. Figure 6 shows that the first three runs

have all boosted for the full 15 seconds and therefore have a 0%

difference in performance. We refer to any performance difference

between runs that have boosted for the entirety of their execution

and runs that have not as error. The 4th run has a 6% error because

it has only boosted for part of its execution. The 5th and 6th runs

exhibit 8% error because these runs do not boost at all.

Due to Turbo Boost’s use of power history, the runs do not have

the same boost duration. The first three runs have boosted for the

full 15 seconds of their execution because their cumulative runtime

of 45 seconds is less than the 55 second boost window. The 4th

run consumes the remainder of the boost window and the system

throttles down during its execution, leaving no boost time for the

5th and 6th run. Therefore, failing to consider recent system activity

can result in a falsely deflated performance result of up to 8%.

Mitigation. To prevent this pitfall we recommend either starting

a workload with a “clean” power history or fully saturating the

power history until a boost no longer happens. We can achieve a

clean power history by idling between each run for the full length

of the power history window, which is about 120 seconds on our

system. An alternative is to fully saturate the power history by

running a workload until it exhausts the boost period and throttles

down and then immediately run the workloads to be measured.

4. Related Work

Several researchers have studied Intel’s Turbo Boost. Charles et al.

[4] analyzed the power and performance trade offs of a previous

version of Turbo Boost that does not throttle by characterizing the

system with CPU and memory intensive workloads. They found

that Turbo Boost increases performance by up to 6% but also

increases energy consumption by about 16%. Wamhoff et al. [14]

focus on comparing Intel’s Turbo Boost and AMD’s Turbo CORE.

They use their comparison to write and evaluate a library that helps

optimize software based on frequency scaling. Lo et al. [8] analyze

the impact of Turbo Boost 2.0 on metrics including system power

and performance. They build a model that predicts the optimal

Turbo Boost setting for each metric.

Several studies have been done on the system warm-up periods

required to ensure accurate benchmarking effects. These warm-up

periods generally last for a few seconds, whereas the warm-up ef-

fects we discuss last for at least a minute. Wunderlich et al. [15]

propose SMARTS, a framework for accurately measuring bench-

marks in simulation. They discuss that a variety of microarchitec-

tural state, including the cache, branch predictor, and TLB, need to

be warmed up before measurements are taken to ensure accurate

results. Hsu et al. [7] discuss how small pieces of a benchmark can-

not be representative of an entire application because applications

comprise different phases.

There has also been work done on reducing measurement bias in

benchmarking. However, none of these works consider the bench-

marking pitfalls that arise in thermally aware systems. Mythkowitz

et al. [9] describe how changing variables such as link order or

UNIX environment size introduces measurement bias. They pro-

pose several solutions for reducing measurement bias, including us-

5



ing a large benchmark suite and randomizing experimental setup.

Curtsinger et al. [5] introduce Stablizer, a tool for ensuring that

performance evaluations of software are statistically significant.

Alameldeen et al. [2] discuss thread scheduling bias in simulated

multi-threaded workloads. In a later work, they determine that IPC

does not accurately characterize workloads [3]. Tsafrir et al. [13]

introduce input shaking—executing multiple simulations with ran-

dom variations in each workload to determine which results contain

noise artifacts.

5. Conclusion

Programmers have had to overcome challenges of measurement

bias and microachitectural structure warm up time to accurately

benchmark systems. Thermally constrained systems have intro-

duced additional benchmarking pitfalls, including longer warm up

times due to the relevance of prior system power history and the

boosting and throttling of frequencies during workload execution.

This paper discussed several pitfalls of benchmarking thermally

adaptive systems that can befall programmers when evaluating per-

formance. Measurement error occurs when programmers extrapo-

late performance from runs of less than a minute. Comparing runs

of different lengths may lead programmers to produce erroneous

results and report that system performance has been deflated by

8%. Performance results may be deflated when a programmer fails

to consider system power history of more than a few minutes.

The above performance differences may grow worse over time.

If techniques such as computational sprinting become common-

place, systems will be able to boost past their sustainable power

at higher ratios. When comparing programs of different lengths,

higher boost ratios could lead to mispredicting performance by

much larger percentages than those produced by running Turbo

Boost. As boost ratios continue to increase, measurement error will

grow as well. The future of sprinting systems will lead to greater

performance and responsiveness, but will also introduce more chal-

lenges and greater pitfalls when benchmarking.

References

[1] Intel Turbo Boost Technology 2.0. URL http://www.intel.com/

technology/turboboost/index.htm.

[2] A. R. Alameldeen and D. A. Wood. Variability in architectural sim-

ulations of multi-threaded workloads. In Proceedings of the Ninth
Symposium on High-Performance Computer Architecture, Feb. 2003.

[3] A. R. Alameldeen and D. A. Wood. IPC Considered Harmful for

Multiprocessor Workloads. IEEEMICRO, 26(4):8–17, July 2006.

[4] J. Charles, P. Jassi, N. S. Ananth, A. Sadat, and A. Fedorova. Evalua-

tion of the Intel®Core™i7 Turbo Boost feature. In Proc. of the IEEE

Int’l Symp. on Workload Characterization, Sept. 2009.

[5] C. Curtsinger and E. D. Berger. Stabilizer: Statistically sound perfor-

mance evaluation. In Proceedings of the 16th International Confer-
ence on Architectural Support for Programming Languages and Op-
erating Systems, Mar. 2013.

[6] S. H. Gunther, F. Binns, D. M. Carmean, and J. C. Hall. Managing

the Impact of Increasing Microprocessor Power Consumption. Intel
Technology Journal, Q1 2001.

[7] W. C. Hsu, H. Chen, P. C. Yew, and H. Chen. On the predictability

of program behavior using different input data sets. In Interaction
between Compilers and Computer Architectures, 2002. Proceedings.
Sixth Annual Workshop on. IEEE, 2002.

[8] D. Lo and C. Kozyrakis. Dynamic Management of TurboMode in

Modern Multi-core Chips. In Proceedings of the 17th Symposium on
High-Performance Computer Architecture, Feb. 2014.

[9] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney. Producing

wrong data without doing anything obviously wrong! In Proceedings
of the 14th International Conference on Architectural Support for
Programming Languages and Operating Systems, Mar. 2009.

[10] A. Raghavan, L. Emurian, L. Shao, M. Papaefthymiou, K. P. Pipe,

T. F. Wenisch, and M. M. K. Martin. Computational Sprinting on a

Hardware/Software Testbed. In Proceedings of the 16th International
Conference on Architectural Support for Programming Languages
and Operating Systems, Mar. 2013.

[11] A. Raghavan, Y. Luo, A. Chandawalla, M. C. Papaefthymiou, K. P.

Pipe, T. F. Wenisch, and M. M. K. Martin. Computational Sprinting. In

Proceedings of the 17th Symposium on High-Performance Computer
Architecture, Feb. 2012.

[12] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weiss-

mann. Power Management Architecture of the 2nd Generation Intel

Core Microarchitecture, Formerly Codenamed Sandy Bridge. In Hot
Chips 23 Symposium, Aug. 2011.

[13] D. Tsafrir, K. Ouaknine, and D. G. Feitelson. Reducing performance

evaluation sensitivity and variability by input shaking. In Modeling,
Analysis, and Simulation of Computer and Telecommunication Sys-
tems, 2007. MASCOTS’07. 15th International Symposium on. IEEE,

2007.

[14] J. Wamhoff, S. Diestelhorst, C. Fetzer, P. Marlier, P. Felber, and

D. Dice. The Turbo Diaries: Application-controlled Frequency Scal-

ing Explained. In Proceedings of the 2014 USENIX Annual Technical
Conference, Apr. 2014.

[15] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe. SMARTS - Ac-

celerating Microarchitecure Simulation via Rigorous Statistical Sam-

pling. In Proceedings of the 30th Annual International Symposium on
Computer Architecture, June 2003.

[16] H. Zhang, R. Amirtharajah, C. Nitta, M. Farrens, and V. Akella. Burst

Mode Processing: An Architectural Framework for Improving Perfor-

mance in Future Chip MultiProcessors. Workshop on Managing Over-
provisioned Systems (W-MOS), 2014.

6


